
Ada Lovelace WS — Siena, Italy — Aug 29, 2019

Bayesian Parameter Inference in Instantaneous
Mantle Flow with Plates

Georg Stadler1
Johann Rudi2 Vishagan Ratnaswamy3 Xi Liu3

Jiashun Hu3 Michael Gurnis3

1Courant Institute of Mathematical Sciences, New York University, USA

2MCS, Argonne National Laboratory, Chicago, USA

3Seismological Laboratory, California Institute of Technology, USA



“Inversion in Mantle Flow” by Georg Stadler

Goal: Better understanding of fundamental mechanisms
I Instantaneous mantle flow &
associated plate tectonics with

realistic parameters & resolutions to
faulted plate boundaries (“the

forward problem”).

II Parameter/model inference from
observations+mantle flow models.

2.85

2.90

2.95

3.00

3.05

3.10

3.15

n

−8 −7 −6 −5 −4 −3 −2

Γ

2.85

2.90

2.95

3.00

3.05

3.10

3.15

n

−8 −7 −6 −5 −4 −3 −2

Γ

2.85

2.90

2.95

3.00

3.05

3.10

3.15

n

−8 −7 −6 −5 −4 −3 −2

Γ

75

100

125

150

175

200

225

σ y
(M

P
a)

−8 −7 −6 −5 −4 −3 −2

Γ

75

100

125

150

175

200

225

σ y
(M

P
a)

−8 −7 −6 −5 −4 −3 −2

Γ

75

100

125

150

175

200

225

σ y
(M

P
a)

−8 −7 −6 −5 −4 −3 −2

Γ



“Inversion in Mantle Flow” by Georg Stadler

What drives plate motions?
I How does slab pull really work?
I What’s the role of back arc-spreading in global mantle motions?
I Can one infer the degree of mechanical plate coupling between

subduction zones based on plate motions?
I What are the trade-offs of underlying forces [Conrad/Hager ’99

using scaling arguments]:
I buoyancy from slabs
I resistance by inter-plate faults
I drag by the underlying mantle
I resistance by bending the oceanic lithosphere

Forsyth & Uyeda [1975]
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Approach

I Instantaneous high-resolution model, one time instant (present day,
or historical)

I Input buoyancy forces (temperature field) and structural features
(faults); self-consistent setup

I Use a high-resolution model only as complicated as necessary
I Comparison to plate motions, plateness, surface strain rates, average

viscosity estimates, topography, gravity etc.

Target is to infer the most uncertain parameters (rheological parameters,
plate coupling strength) to global observations (Bayesian inverse

problem).
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High-resolution global forward models
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Equations for momentum/mass conservation
−∇ ·

[
µ(T,u) (∇u +∇u>)

]
+∇p = f(T )

∇ · u = 0

u . . . velocity
p . . . pressure
T . . . temperature
µ . . . viscosity

Rheology is shear-thinning with plastic yielding, and upper/lower
viscosity bounds; exponential dependence on temperature:

µ(T,u) = µmin + min
(
τyield
2ε̇(u) , wmin

(
µmax, a(T ) ε̇(u)

1−n
n

))
Plates are modeled as high-viscosity
fluid (low T ); plate boundaries are
narrow zones of weak viscosity
(prefactor ω(x) controls plate
coupling).
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Solver and discretization
I Discretization with adaptive finite hexahedral elements
I Order 2 or 3 for velocity, and corresponding stable discontinuous

pressure elements of lower order
I Mesh refinement used to resolve narrow weak zones, and

dynamically weakening areas (hinges)
I Resolved model has about 500M dofs, smallest mesh elements

1-2km (runs on several K CPUs)
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Solver and discretization

I Nonlinearity is treated with Newton’s method; plastic rheology (von
Mises) uses Newton modification method to improve convergence

µ(T,u) = µmin + min
(
τyield
2ε̇(u) , wmin

(
µmax, a(T ) ε̇(u)

1−n
n

))
I Linearized Stokes solved with BFBT Schur complement, and

geometric+algebraic multigrid-preconditioned GMRES
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Setup and resolution
I Free-slip boundary conditions
I Input is temperature structure and fault weak zones (details later)
I Shown below: Misfit with plate observations (in green), trench

rollback, plate coupling (white are observations)

Rhea Black Nuve-1A, no net rotation

  

Run66
σ y = 100 MPa
σ y

hinge = 20 MPa
n = 3.25
ηLM = 30ηTR
Weak, young Back - arc

Coupling Coefficient Between Plates

White arrows:  
Plate kinematics 

Black arrows: 
 Model
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From forward towards inverse modeling

I Hand-tuning models to fit observations cumbersome, only possible
for a few parameters

I It is subjective
I Even if good parameters are found, we have no information about

their stability or other possible parameters

Inverse problem theory (deterministic or Bayesian) is a systematic
approach to infer parameters and to quantify our confidence in them.
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Inverse Problems: Inference from data+model
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Bayesian inversion for uncertain parameters m

I Observations d: plate motions; average viscosity below
lithosphere,. . .

I Parameters m: strain rate exponent n, yield stress τy, activation
energy, prefactors in lower/upper mantle, weak zone factors wi

(about ∼ 20)

µ(T,u) = µmin + min
(
τyield
2ε̇(u) , wmin

(
µmax, a(T ) ε̇(u)

1−n
n

))
I Model f(m): Notation for nonlinear Stokes solve given m,

“parameter-to-observable map”

I Additive Gaussian data noise: d = f(m) + e, e ∼ N (0, Cn).
I The posterior density is (using Bayes’ Theorem):

πpost(m) ∝ exp
(
− 1

2‖f(m)− d‖2
C−1
n
− 1

2‖m−m0‖2C−1
pr

)
.
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Approximations of the posterior pdf πpost(·)
With these assumptions (Gaussian prior and noise), the posterior is:

πpost(m) ∝ exp
(
− 1

2‖f(m)− d‖2
C−1
n
− 1

2‖m−m0‖2C−1
pr

)

πpost(m)

MAP estimation

πpost(β)

Gaussian approx. around MAP

πpost(β)

MCMC or importance sampling

In high dimension, we use. . .
I . . .MAP estimation (i.e.,

Stokes-constrained optimization)
I . . . Gaussian approximation of

posterior
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Inversion Algorithms

MAP optimization: Maximizing the posterior equals minimizing its
negative log, i.e.:

min
m

F (m) := 1
2‖f(m)− d‖2

C−1
n

+ 1
2‖m−m0‖2C−1

pr

Compute gradient of F (·) using adjoint method!



“Inversion in Mantle Flow” by Georg Stadler

Adjoint method to compute F ′(m):

1. For given m, solve nonlinear Stokes equations:

−∇ ·
[
µ(T,u,m) (∇u +∇u>)

]
+∇p = f(T )

∇ · u = 0

2. Solve an adjoint problem for the linear (!) adjoint velocity v

−∇ ·
[
µ′(T,u,m) (∇v +∇v>)

]
+∇q = ∂F/∂u

∇ · v = 0

3. Combine u and v to compute F ′(m).

Requires one additional linear solve only!
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Inversion Algorithm

I We also compute directional second derivatives of F (·) using similar
approach

I Solve optimization (MAP point) using iterative descent method

I At MAP estimate, compute Gaussian approximation of posterior
using that inverse Hessian approximates covariance matrix
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Example I: Synthetic models

Parameters
I Parameters: plate coupling

strength, global rheology
parameters (≤ 5 params)

Observation data
I Data: plate velocities
I Computed from forward simulation

(i.e., synthetic data)
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Example I: Inversion of plate coupling & rheology paramsAdjoint of non-linear mantle flow 781

Figure 7. Comparison of 2-D conditional distributions (with Gaussian priors) for the uncertain parameters n, ! and σ y. Shown are contour lines (22 per cent,
44 per cent, 66 per cent, 88 per cent) corresponding to the Gaussian approximation at the MAP point (in red), contour lines for the actual posterior distribtion
(in blue) and contour lines for the prior distributions (grey). For these conditionals, the parameters kept fixed are in (a) σ y = 128.9, in (b) ! = 10−5, and in
(c) n = 3.

However, the slope on the contours of n with respect to σ y even-
tually flatten as there is no yielding when σ y becomes too large.
Within the space of yield stress and coupling factors, the condi-
tional shows that the actual distribution is well predicted from the
Hessian (Fig. 6c). We find a negative correlation between the pref-
actor and the yield stress because as the coupling factor between
plates increase, the plates need more yielding so as to fit the surface
velocity data. The slopes of the contours become constant for small
coupling factors when the yield stresses exceed the stresses in the
system.

Finally, in Fig. 8, we show 2-D marginals for the Gaussian ap-
proximation at the MAP point and compare with marginals of the
true posterior distribution. The true distribution is explored using
MCMC sampling, and in particular the Delayed Rejection Adap-
tive Metropolis (DRAM) method (Haario et al. 2006). We use 1177
samples computed through repeated forward solves. In Fig. 9, we
plot the sample history for the prefactor !, which suggests that

there is sufficient mixing. The integrated autocorrelation time for
the chain τ given by

τ = 1 + 2
∞∑

i=1

ρk, (21)

where ρk = Cov[Xt ,Xt+k ]
Var[Xt ] is the autocorrelation at lag k, with Xt de-

noting the value of an observed state at time t. The integrated au-
tocorrelation times for each parameters are τ! = 7.46, τσy = 4.68,

τn = 8.18. The autocorrelation provides an estimate of the statistical
dependence of the samples in the chain. It indicates that about ev-
ery 5–8th sample in our chain is statistically independent (Robert &
Casella 2004). The autocorrelation times should be small (as they
are here) so that there are large mean squared jumps, indicating
effective mixing and a well sampled posterior distribution.

Next, we qualitatively compare the contours of the 2-D marginals
of the Gaussian approximation and the posterior distributions

 by guest on June 9, 2016
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2D pairwise conditionals for Γ, n, σy. Prior,
Gaussian approximation and true posterior.

I Inference for plate
coupling Γ (w) and
rheology parameter n from
surface velocity data.

I Gaussian prior distribution
for parameters.

I Posterior approximation
uses inverse Hessian as
covariance matrix.

I Full posterior computed
using Delayed Rejection
Adaptive Metropolis
(DRAM) sampling.
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Example I: Inversion of plate coupling & rheology params782 V. Ratnaswamy, G. Stadler and M. Gurnis

Figure 8. Comparison of 2-D marginal distributions for the unknown parameters n, ! and σ y. Contour lines (for 22 per cent, 44 per cent, 66 per cent, 88 per cent)
for the marginals from the Gaussian approximation of the posterior distribution are shown in red. Contour lines for the marginals of the true postrior distribution,
obtained from an MCMC sampling approach are shown in blue. (a) Marginals distributions for ! versus n, (b) marginal distributions for σ y versus n and
(c) marginal distributions for ! versus σ y.

(Fig. 8). Note that the approximation is reasonable, since the most
important trade-offs and correlations found in the posterior and
its Gaussian approximation coincide. Compared to the condition-
als, however, the difference between the Gaussian approximation of
the posterior distribution and the posterior distribution is more pro-
nounced. As to be expected, the marginal of the MAP point does not
always coincide with the most likely point of the 2-D marginal. Like
the conditionals, the marginals show a positive correlation between
! and n (Fig. 8a). In all cases, the shifts in the actual distributions
away from the Gaussian distributions are caused by (the lack of)
yielding for large values of σ y.

8 D I S C U S S I O N A N D C O N C LU S I O N S

In model problems, we have shown that non-linear constitutive pa-
rameters and individual coupling factors between subducting and
overriding plates can be inferred along with estimates of uncertainty

and the trade-offs between them. Although idealized, the forward
models are functionally equivalent to existing highly resolved (1 km
where needed) global models (Alisic et al. 2010, 2012; Stadler et al.
2010), such that the methods developed here will be applicable to pa-
rameter inference with quantified uncertainties for the global mantle
flow and plate motion problem. Our primary goal here is to discuss
present results in terms of their applicability to the geophysical
problem.

We use adjoint variables to efficiently compute first and second
derivatives of the negative log likelihood function. This requires the
solution of the adjoint Stokes eqs (18), which have an anisotropic
viscosity but are linear in the adjoint variables. Due to the self-
adjointness of the Stokes equations, this adjoint operator coincides
with the linear operator required in the Newton method. Hence, a
forward non-linear Stokes solver for (1) based on a Newton method
is already equipped with the operator needed to solve the adjoint
Stokes problem and only the computation of the adjoint system
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Updated input data and 2D inversions

I Mega-thrust
interface using
Slab1.0

I Thermal structure
from seismic
models and
convergence rate
of slabs

I Lithosphere model
I Slab structure

blend with
tomography-based
models

I Morvel56
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Example II: Inversion results for WEP slice
This is a 3D thin slice

I Fitting the observations after about 7 inverse problem iterations.

I Convergence history for weak zone parameters (Chile, Ryukyu,
Mariana), for strate rate exponent and yield stress.
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Example II: Inversion results for WEP slice
This is a 3D thin slice
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Mariana), for strate rate exponent and yield stress.



“Inversion in Mantle Flow” by Georg Stadler

Example II: Inversion results for WEP slice
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Figure 2: MG: When I look at the viscosity in A, it looks like the average viscosity is ⇠ 1019 Pa s however,
in Table 1, it is stated that the value throughout the upper mantle is 3.96 ⇥ 1021 but the values through
through the lower mantle looks even smaller. How can this be? (A) E↵ective viscosity in the final converged
state of Case 1 for the WEP cross section. Distance in degrees east along the great circle. (B) Case 1 surface
velocity at two di↵erent iterations (dashed lines) compared with plate motion data (solid blue line). The
velocity near the Mariana plate margin is shown in detail. (C) Convergence of coupling factors for Case 1
(solid circles) and Case 6 (open squares) for the Chile (CHL in blue), Ryukyu (RYU in black), and Mariana
(MAR in green) plate margins. Convergence for the nonlinear exponent (n, shown in D) and yield stress
(�y, shown in E) for three cases (Case 1 and 6 have the same symbol as in C while Case 14 is shown with
the open diamond symbols).

17

Effective viscosity. Here, besides plate motion data, we have also used
the average viscosity in the boxed region.
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Example II: Inversion results for WEP slice

Effective viscosity. Here, besides plate motion data, we have also used
the average viscosity in the boxed region.
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Example II: Inversion results for WEP slice
Cross Section from Western to Eastern Pacific 

Conditional Distribution

Two-dimensional distribution between shear stress and n with and
without using average viscosity data.
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Example II: Inversion results for WEP slice

Shear stress estimates (with uncertainty) for Chile (red), Ryukyu (black)
and Marianas (green), versus strain rate coefficient n.
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Summary & Perspectives

Solvers
I High-resolution adaptive

discretization
I Full Newton solver for

instantaneous Stokes with
strain-rate weakening and
yielding

I Consistent temperature field
(slabs) and faults;
Self-consistent flow field

Inversion
I Instantaneous inversion for plate

couplings and rheology
parameters

I Gives confidence/uncertainty
regions, and trade-offs

I Gradients using adjoints are
efficient and often do not require
much new implementation

Thanks!
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Extra Slides
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Inversion of initial temperature T0 (and global parameters)
Forward simulation
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I Use (estimate of) present-day
mantle temperature and plate
tectonic history to “go back” in
time.

I Gradient computation requires
solving state equation, and
adjoint equation backwards in
time.

I This is time- and
memory-consuming.
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Inversion of initial temperature T0 (and global parameters)
Forward simulation
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Inversion of initial temperature T0 (and global parameters)
Forward simulation
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Inversion of initial temperature T0 (and global parameters)
Iterates of inversion
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I Data: Surface velocities and
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Inversion of initial temperature T0 (and global parameters)
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