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Motivation

Geodynamic
modelling
Idealized test

e Parameterize real scenario
— Easy to test/quantify effects

- (b) Map view

Eurasia

w 00TS

5100 km

Pusok (2015)
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Motivation

Geodynamic
modelling

Idealized test Inversion

e Parameterize real scenario
— Easy to test/quantify effects

e Fitdata
- Ultimately represents nature

(a) [Arerim \(b) Map view
N *
/N
' N Eurasia
- =M g 0
3 A Va = £ -100+
: - of‘ Arabian Sea 3 .; sl
2 ; -
4004
e ¥
o e —— ¢ S100km ‘ & ; ;
. o o e o e R Pusok (2015) Profle dstancelnkm — paumann (2015)
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Motivation

Measurement device

Physical description

Vo= (01 pg)T

V-u=0

Ada Lovelace Workshop 2019
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Motivation

Measurement device (Field) measurement: u,,,

T
31
1% 4 {
&
- w
.

Physical description
V.o =(0,p9)"

V-u=10
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Motivation

Measurement device (Field) measurement: u,,,

¢

e P

i | e

Cost function:
F=0.5(u-u,,)"(u-u,)

Physical description

V.o=(0,pg9)"

V-u=10
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Motivation

Measurement device

Cost function:
F=0.5(u-u,,)"(u-u,)

Physical description

V-0 =(0,p9)"
V-u=0 Update
computer
Simulation until
F=0
29/8/2019 Ada Lovelace Workshop 2019 .
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Motivation

E.g: uobs

Ada Lovelace Workshop 2019
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29/8/2019

F(u, u,,)

Motivation

F = —(u— tops)? (4 — Ugps)

obs

Ada Lovelace Workshop 2019
Georg Reuber
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29/8/2019

F(u, u,,)

Motivation

obs

Simulation

Ada Lovelace Workshop 2019
Georg Reuber

= Find minimum of F
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Motivation

u

250 obs
200 F (u, u,.)

150 v

100

50

; |

-50

Grid search = Find minimum of F
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Statistical
(Randomized) statistical search

F

-

29/8/2019

Motivation

200

= Find minimum of F
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Motivation

Statistical
* Grid Search Sampling

200

- 150

100
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Motivation

Statistical

* Grid Search Sampling
- Many simulations
— Broad knowledge of cost function

200

- 150

100
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Motivation

Statistical
* Monte-Carlo Sampling

200

Fa —

a
150
2.
= 100
p°’ 50

e il

Ada Lovelace Workshop 2019

29/8/2019 Georg Reuber

16



Motivation

Statistical
* Monte-Carlo Sampling

Function evaluations = 1000

- 100
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Motivation

Statistical

* Monte-Carlo Sampling
- Many simulations

— Broad knowledge of cost function
Function evaluations = 1000

- 100
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Motivation

Statistical
MCMC Sampling

r — 1 200
a{ 4 -
' 150
24
- 100
p o o w
- 5
-4 4 7 . 50
-4 -2 0 n 2 4
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Motivation

Statistical

MCMC Sampling

Function evaluations = 653

ran

-

-2 o n 2 4

29/8/2019

200

150

- 100

=50
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Motivation

Statistical

* MCMC Sampling
- Few simulations

- Requires fine-tuning
Function evaluations = 653

E

Ada Lovelace Workshop 2019 71
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Motivation

Statistical

* Bayes Theorem
- Prior knowledge goes in sampling

Ada Lovelace Workshop 2019
29/8/2019 Georg Reuber
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Motivation

Statistical

* Bayes Theorem
—> Prior knowledge goes in sampling
- Compute posterior

- Uncertainty in parameters 10
Function evaluations = 8000
200 06
p " 04
| 150

/ 100 u.o

\ ” 4 2 0 2 A
I' 0 08
nnnnnn 50 0e

N [ i — ... many more methods
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Motivation

Gradient based:
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Gradient based:

Motivation

T Deterministic

Function evaluations = 18

Fan

Few ,simulations’
Sensitive to local minima

29/8/2019

Ada Lovelace Workshop 2019
Georg Reuber
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Motivation

Gradient based [gradient descent]:

1
F=-
2
dF
pn+1 — pn . ad_
p
29/8/2019

(u — uobs)T(u - uobs)

T Deterministic

Function evaluations = 18

Ada Lovelace Workshop 2019

Georg Reuber
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Motivation

Gradient based [(Quasi)-Newton]:

1

F = _(u — uobs)T(u - uobs)

2

pn+1:pn—a[

.. more methods

29/8/2019

d (dF\] ' dF
dp \ dp dp
Hessian matrix

- Relates to the

covariance matrix
in Bayesian context

T Deterministic

Function evaluations = 18

Ada Lovelace Workshop 2019

Georg Reuber
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Gradient based:

Motivation

T Deterministic

Function evaluations = 18

.F . -

Few ,simulations’
Sensitive to local minima

How to evaluate gradient?

29/8/2019
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Georg Reuber

28




Motivation

T Deterministic

Function evaluations = 18

200
Gradient based:
150
* Few ,simulations’
* Sensitive to local minima - 100
. 50
* How to evaluate gradient?
0
- Here simple: analytical ,
1 ; , =50
dF F(p+h)—F Moo — i
- Or FD: = (P ) (p) -4 -2 0 2 4
dp h n
29/8/2019 Ada Lovelace Workshop 2019 79
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Motivation

nD-
Inversion

... hdimensions

* 5rock phases in thermo-elasto-visco-plastic model = 40 parameters (=dimensions)
* Seismology: wavespeed at every node is a free parameter = # nodes parameters (billions)

—> Every viscosity free parameter = # nodes parameters

Ada Lovelace Workshop 2019
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Motivation

nD-
Inversion

... hdimensions

» Statistical: 40 parameters + 10 samples per parameter = 10740 simulations
* Deterministic: Two solves per parameter with FD = 80 simulations (per descent iteration)
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Motivation

nD-
Inversion

... hdimensions

» Statistical: 40 parameters + 10 samples per parameter = 10740 simulations
* Deterministic: Two solves per parameter with FD = 80 simulations (per descent iteration)

- More efficient gradient computation available?

Ada Lovelace Workshop 2019
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Motivation

nD-
Inversion

O m @ @ ... N dimensions

Adjoint method:
* Independent of # parameters (very efficient)
* Requires forward (nonlinear) + adjoint solve (linear) and gradient computation
- Requires formulation of adjoint equation

Ada Lovelace Workshop 2019

29/8/2019 Georg Reuber
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Method

Constrained optimization:
e Appears a lot:

e E.g. Economics: Maximize profit
in terms of labor hours and raw
material with limited budget

* Logistics

 Thermodynamics




Method
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Method
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Method

-> Find lowest point of Hike

Ada Lovelace Workshop 2019
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Method

m
LACK BEAR
SGHTING

Do not approach or interfere with bears
Make noise in your yard and on the trail
Remove all bear attractants (food)
Leave bears an escape route

Keep an eye on children and pets

Dogs should be on leash

+++ Be a part of the solution

I) National Park (with Bears)

Ada Lovelace Workshop 2019
29/8/2019 Georg Reuber 38



Method

ATELTTR E—

m
LACK BEAR
SGHTING

Do not approach or interfere with bears
Make noise in your yard and on the trail
Remove all bear attractants (food)
Leave bears an escape route

Keep an eye on children and pets

‘ Dogs should be on leash

+++ Be a part of the solution
_—

Bk e\ My

I) National Park (with Bears)

Il) Foggy day

Ada Lovelace Workshop 2019 39
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Method

I R W—

BLACKHB‘EAR
SIGHTING

Do not approach or interfere with bears
Make noise in your yard and on the trail
Remove all bear attractants (food)
Leave bears an escape route

Keep an eye on children and pets

Dogs should be on leash

+++ Be a part of the solution

. R ik S\ P

I) National Park
Il) Foggy day
40
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»

L Zd

I) National Park
Il) Foggy day

29/8/2019

Method

I R W—

BLACKHB‘EAR
SIGHTING

Do not approach or interfere with bears
Make noise in your yard and on the trail
Remove all bear attractants (food)
Leave bears an escape route

Keep an eye on children and pets

Dogs should be on leash

+++ Be a part of the solution

. R ik S\ P

-> Find lowest point of Hike

Ada Lovelace Workshop 2019
41
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Method

T Deterministic

Valleys Hiking trail
: 200
Constrained optimization: 4 F - -~
* In our example: 150
1. Function represents mountain 2 1
- 100
belt
2. Find lowest point of hike 01 5o
y
i W 0
-4 4 : ' -50
k:r T T r‘j
-4 -2 0 X 2 4
29/8/2019 Ada Lovelace Workshop 2019 47
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Method

5' 240
Constrained optimization: ~+ 200
* Function F(x,y) - topography 160
e Constraint g(x,y) — hike .
L 80
L 40
~+0
-
) — - _40
=
29/8/2019 Ada Lovelace Workshop 2019 43
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Method

- 240

- 200

Liill]

Constrained optimization:
* Function F(x,y) - topography
e Constraint g(x,y) — hike

- 160

- 120

Im
|
£
o

Ada Lovelace Workshop 2019
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Method

- 240

- 200

Liill]

- 160

- 120

- 80

- 40

L 40

(HEREEN
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Method

- 240

Liill]

Constrained optimization: - 200

* Function F(x,y) - topography
e Constraint g(x,y) — hike

- 160

- 120

- 80

- 40

NINNREE
&
o

Ada Lovelace Workshop 2019
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Method

- 240

Liill]

Constrained optimization: - 200

* Function F(x,y) - topography
e Constraint g(x,y) — hike

- 160

- 120

NINNREE
&
o

Ada Lovelace Workshop 2019
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Method

— 240
Constrained optimization: -+ 200
* Function F(x,y) - topography L 160
e Constraint g(x,y) — hike -
- Find common gradient along R
constraint - 40
+0
-
—+ -40
29/8/2019 Ada Lovelace Workshop 2019 48

Georg Reuber



Method

111

Constrained optimization:
L(x,y,\) =F(x,y) + Ag(x,y)
VL(x.y,A) =0

’ VF(x,y) = AVg(x,y)

g(x,y) =x*+y* -2
- Solve for x,y & A

(HEREN

- x & y = coordinates of minimum . - . 7
- [P(x,y) = lowest point = A = d(P)/d(Radius)] >4 -2 0 X 2 4

Ada Lovelace Workshop 2019

2 201
9/8/2013 Georg Reuber

D
\e}

- 240
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- 160

- 120



Adjoint method

(PDE - constrained optimization)
1) Field inversion

Il) Vector (p) inversion



Field

Objective function (no regularization):

F(x, x(p)) x= (g
F = % (u — U—obs)T (U — ugps)

Ada Lovelace Workshop 2019

29/8/2019
/8/ Georg Reuber

(1)

(3)
(4)

(5)
(6)
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Field

Objective function (no regularization):

F(x,x(p))
F = % (u — U—obs)T (U — ugps)

X = (uap)T

Stokes (inversion constraint, linear, no advection):

V.o = (Oapg)T

o = 2né(u) — pl

29/8/2019

V-u=0
1
éu) = 5(Vu+ vul)

Ada Lovelace Workshop 2019
Georg Reuber

(1)

(3)
(4)

(5)
(6)
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Field

Objective function (no regularization):

F(x,x(p)) x = (u,p)’
F = ¢ (= ugpe)” (0~ ugp,)
Stokes (inversion constraint, linear, no advection):
V.o =(0,pg) V-u=0
o — 2né(u) — pl é(u) = 3 (Vu+ V')

Lagrangian (constrained optimization):

[:(117‘17297(]71)) = F + (2)741)' FP

VL(u,v,p.q,p) =0

29/8/2019

=> Find critical points of this function

Ada Lovelace Workshop 2019
Georg Reuber

(1)

(3)
(4)

(5)
(6)
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Field

Objective function (no regularization):

Lagra

VL

Il.

.

IV.

Vi.

FP multiplied by some Lagrange multipliers (shape functions)
is the weak form (FEM) of the FP

FP linear — (often) self- adjoint
If FP nonlinear — additional terms appear (e.q. viscosity
derivative) — like deriving Jacobian

Gradient of parameter at every node — ,field’ inversion
Independent of discretization

Can be derived for any variable that occurs in the equation,

e.g. principal stress directions: 1 2%,
by = —tan (--~—y-—~
€

2 Txr — éyy ) Reuber et al. (in prep)




Vector

Approach implemented in LaMEM (equal result):

1) Objective function (no regularization):
F(x,x(p))

1
F==
2

(u — uobs)T (u — uobs)

X = (u,p)

T

(1)

(3)



Vector

Approach implemented in LaMEM (equal result):

1) Objective function (no regularization):

F(x,x(p)) x = (u,p)’ (1)
1
F = 5 (u — uObS)T (U — upps) (2)

2) Objective function derivative (final gradient sought):

dF  OF N OF dx
dp  Op Oz dp

First term = O (!= 0 if regularization) (3)




Vector

Approach implemented in LaMEM (equal result):

1) Objective function (no regularization):

F(x,x(p)) x= (u,p)"
F = % (u — uobs)T (U — ugps)

2) Objective function derivative (final gradient sought):

dF  OF OF dx

G = + First term = O (!= 0 if regularization)
dp 0

Ox dp

2) Residual derivative (R = 0):
dR  OR L Ok OR dx
dp ap Ox dp

Jacobian

(1)

(3)



Vector

3) Substitute:

Ada Lovelace Workshop 2019

29/8/2019 Georg Reuber

(5)

(6)

(7)

(8)
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Vector

3) Substitute:

d_x — J_la_R
dp op
_OFdz __OF _,0R
-~ dxdp  Ox Op
4) Final:
o (OF\'
v="J (833
- +OR
29/8/2019 Ada Lovelace Workshop 2019

Georg Reuber

(5)

(6)

(7)

(8)
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Vector

3) Substitute:

dx _10R
&~ .
OF dx oF __,0R
= o =5 T4 (6)
Ox dp Ox op
4) Final:
_ r (OF\"
Y =4J (am:) (7)
7 OR

G=—9Y" — (8)

Note: Two options to compute gradients with the adjoint method:
I) Converge forward problem — compute missing partial derivatives — reuse FP Jacobian - DtO
I1) Write two codes — one for FP and one for AP — combine solution to compute Gradient - OtD

Ada Lovelace Workshop 2019

2 201
9/8/2019 Georg Reuber
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What are these gradients good
for?

I) Obviously for gradient based
inversion

Il) Sensitivity kernels in geodynamics —
resolution proxy

Ill) Automatic derivation of scaling laws




Sensitivity

Regular Wavefield Adjoint Wavefield Interaction Field Kg(x, 2,10
@ 80 A A A M A 2 2 " 3 5
8
¥ w0 \*ﬂ: st { = o | { = o | { =
E 0 —r— T y T Y y g y T T

(b) 1=32.00s
&

J o .
b2
v
b3
o
%

éso

540-[# o | { = o t{ = | o ({ » mee
s '

s o &

éw 2 " " 2 " " " " " " " 2
‘—;w. o 1 | % o T O -
Z 0 - - - - - - - - - - - -

80

(¢) 1=8.00s
=
b3
o
»
o

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100

Ada Lovelace Workshop 2019
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Sensitivity

Regular Wavefield Adjoint Wavefield Interaction Field Kg(x,z,1)

80

44.00s

40 % ¢/o|s | - % o ; * o = % o

(@)t

Physical resolution test

Why not try in geodynamics as well?

é 80 7
u 40 e o B ST B * o K L S
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
e —
Tromp et al. (2005) "
-2 -1 0 | 2

29/8/2019

Ada Lovelace Workshop 2019
Georg Reuber

63



Geodynamic sensitivity kernels

- What are the velocities at the surface most sensitive to?
- Compute gradient as usual but use: F' = u
- Sensitivity of solution to p + n at every node
— E.g. resolution test in seismology

2 4Be+00 00 GutputFWIjIG_Eta . 344

OutputPWIfIG_Rho

232e+00 112

02 216e400 02 280
=-0.4 200e+00 04 248
184e+00 216
4 1 68e+00 0.6 184
152
-0.8 152e+00
136e+00 ° 1
4
-1.0 ¢ 1o 0.38
120e+00 0.00 025 050 | i J 200 056
00 . 800e.05 . 480e-05
3 60e-05
6.00e-05 e
240e-05
=02 4.00e-05
120e-05
P 2.00e-05
-0 0.00e+00
0.00e+00
-0.6 -1.20e-05
2.00e-05
-2.40e.05
-08 Vx 4.00e-05 P
6.00e-05
-1.0 4 .80e.05
000 025 050 075 100 125 150 175 200 8.00e.05 B00&0S
Ada Lovelace Workshop 2019
29/8/2019 P 64
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Sensitivity

- What are the velocities at the surface most sensitive to?
- Compute gradient as usual but use: F' = u
- Sensitivity of solution to p + n at every node
- E.g. resolution test in seismology

abs(Sensitivity) rho

00
120e-09

-0.2
1.00e-09
-04 8.00e-10
6.00e-10

-0 6
4.00e-10

-08
200e-10

-10

0.00 025 0.50 075 100 125 150 175 200

Ada Lovelace Workshop 2019
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Sensitivity

- What are the velocities at the surface most sensitive to?
- Compute gradient as usual but use: F' = u
- Sensitivity of solution to p + n at every node
- E.g. resolution test in seismology

abs(Sensitivity) eta

0.0 2.00e-11
175e.11

-0.2
1 150e-11
- 125e-11
-100e-11
-0.6 7.50e.12
5.00e-12

-08
250e-12

-1.0
0.00 0.25 0.50 0.75 100 125 150 175 200

Ada Lovelace Workshop 2019
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Sensitivity

Absolute sensitivity: Density)

Timestep 1

29/8/2019

Ada Lovelace Workshop 2019
Georg Reuber
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Sensitivity

Timestep 1

Absolute sensitivity: Density)

Timestep 50

Cheap!
Can be done every timestep

Absolut

29/8/2019 Georg Reuber 68



Automatic derivation of scaling
laws



Scaling law

(A) Hard-film regime

: 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10]

0.5— |
0 0

Height []

0 05
Width []
1 = 1
Phase
3 0 0.5 1 1.5 2 25 3 3.5 4 4.5 (5] 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10]
e »—F % T 3
£
0 0
0 05 ! 5 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10
Width []
| ! _ Reuber et al., 2017
-2.8e-6 -1.5e-6 0 1.5e-6 2.8e-6
Velocity z []

Nondimensional 2 layer Rayleigh-Taylor instability
Random perturbation at interface

log,,(H/H)

hard-film |
B v

-1 0 1
log (t/u;)

Ada Lovelace Workshop 2019 70
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Scaling law

(A) Hard-film regime

: 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Height []

dmaz = 4F Apg H; (nlowefr)_lh

1

3.5 4 5 6 6.5 7 7.5 8 8.5 9 9.5 10

Helgl"_lt [
v
+
4

L ————

0
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5 55 6 6.5 7 75 8 8.5 9 9.5 10
Width []
} | Reuberetal., 2017
-2.8e-6 -1.5e-6 0
Velocity z []

Nondimensional 2 layer Rayleigh-Taylor instability
Random perturbation at interface

log,,(H/H)

-1 0 1
10g,4(k./u1.)

Ada Lovelace Workshop 2019
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Scaling law

(A) Hard-film regime

. 0 0.5 1 1.5 2 25 3 3.5 4 45 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Height []
o
[¢,]

— .
0

_1 6.5 7 7.5 8 8.5 9 9.5 10
qmaz = Ar Ap g Hi (Miower) _

3.5

4 55 6 6.5 7 75 8 8.5 9 9.5 10

1

# L L o am ae L8

Height []
&
I

0 0.5 1 1.5 2 25 3 35 4 4.5 5 55 6 6.5 7 75 8 8.5 9 9.5 100
Width [1
| | _ Reuber et al., 2017
-2.8e-6 -1.5e-6 0 1.5e-6 2.8e-6
Velocity z []

No cost function (as before)

Ada Lovelace Workshop 2019
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Scaling law

(A) Hard-film regime
. 0 0.5 1 1.5 2 25 3 35 4 45 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10]
0.5

— .
0

dmaz = Ar Dp g Hi (iower) ™

Height []

: 0.5 1 1.5 2 25 3 3.5 4.5 5 55 6 6.5 7 75 8 8.5 9 9.5 10]
=8 - > = = ==k
[

I
0 0
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 55 6 6.5 7 7.5 8 8.5 9 9.5 10
Width []
: | | — Reuber et al., 2017
-2.8e-6 -1.5e-6 0 1.5e-6 2.8e-6
Velocity z []

No cost function!

F%F*—Appl p2 ...pon

n General (multiplicative) scaling law

Ada Lovelace Workshop 2019
29/8/2019 Georg Reuber /3



Scaling law

(A) Hard-film regime

0 0.5 1 1.5 2 25 3 3.5 4 45 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10]

y
Gmaz = Ar Ap g H; (mower)_I_

Height []

o
o

%35' & — ‘% ——
0 0.5 1 1.5 2 25 3 3.5 4 4.5 Widih " 55 6 6:.5 7 75 8 Reaquer ;t al 95201 7]0
] ‘ _ v
-2.8e-6 -1.5e-6 0 1.5e-6 2.8e-6
Velocity z []

F = No cost function!

~o * —_ 2 b’n o o o .
F~F =Af p1 P - - Pp General (multiplicative) scaling law

bi = Exponent

Ap = Prefactor
by , b2 bn
29/8/25% p2 T pn Ada Lovelace Workshop 2019

Georg Reuber
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Scaling law

Amax — AF APQ H’L (nlower)_l

Maximum growth rate value gmar = 9.5 X 10—4,

Parameter Index Value Scaling exponent dF/dp; OGmaz/ODi

adjoint / analytical

Ap 1 1 1.02 /1 9.53 x107% 8 x10°*
Nupper 2 1 ~3.38x1072 /0 —-32x107° 0

Mower 3 100 —0.97 / -1 —9.21 x107% -8 x107°
H, 4 0.5 1/1 1.9 x 1073 1.6 x 1073

— Exact reproduction of analytical solution

Ada Lovelace Workshop 2019
2 201 7
9/8/2019 Georg Reuber >



Scaling law

Hard-film regime (evolved)

0 05 1 15 2 25 3 35 4 45 5 55 6 65 7

1

Heig_ht [

gt
0 05 1 15 2 25 3 35 4 4.5 5 55 6 65 7 75 8 85 9 95 10
1 1
T
D05 ) 05
T —
0 0
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10
Width []
= Reuberetal., 2017
-4e-4 -2e-4 0 2e-4 4e-4
Velocity z []
{
Several ,domes’ evolve
29/8/2019 Ada Lovelace Workshop 2019
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Hard-film reg

Scaling law

ime (evolved)

05 1 15
1

025

Height []

Height [1

Scaling exponents

Several ,domes’

1.5

0.5

-0.5

Time integrated scaling exponents

- _Ap W
_nUpper ,
r]Lct\.w«rer
0 1000 2000 3000 4000 5000
Time []

6000

9 95 10
1
05
0
9 95 10
9 95 10
1
\_\ 05
0
9 95 10

Reuberetal., 2017

29/8/2019

Ada Lovelace Workshop 2019

Georg Reuber

77



Conclusions

* Adjoint method very efficient:
* independent of number of parameters (,field inversion‘)
e Can be derived for any parameter for any PDE




Conclusions

* Adjoint method very efficient:
* independent of number of parameters (,field inversion‘)
e Can be derived for any parameter for any PDE

e Statistic methods:
* Full knowledge (topology) of cost function
* (Almost) No additional implementation required
* Numerical cost scales with number of parameters




Conclusions

* Adjoint method very efficient:
* independent of number of parameters (,field inversion‘)
e Can be derived for any parameter for any PDE

e Statistic methods:
* Full knowledge (topology) of cost function
* (Almost) No additional implementation required
* Numerical cost scales with number of parameters

* Deterministic methods:
e Gradient information
- Reveals sensitivity of e.g. velocity on density — resolution test
—> Scaling law computable
- Time integration
— Hessian — link to statistic methods




