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Geodynamic 
modelling

Idealized test Inversion

Pusok (2015)

• Parameterize real scenario
→ Easy to test/quantify effects

• Fit data
→ Ultimately represents nature

Baumann (2015)

uobs

ρ,η
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Measurement device

Physical description Computer simulation: u

(Field) measurement: uobs

Cost function:
F = 0.5(u-uobs)

T(u-uobs)

Inversion

Update 
computer 

Simulation until 
F = 0
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ρ,η
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ρ η

F (u, uobs)

Inversion

uobs

ρ,η
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Simulation → Find minimum of F

Inversion

uobs

ρ,η

ρ η

F (u, uobs)



Motivation

1229/8/2019
Ada Lovelace Workshop 2019 

Georg Reuber

Grid search

Inversion

uobs

ρ,η

→ Find minimum of F

ρ η

F (u, uobs)
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Statistical

• (Randomized) statistical search

ρ

η → Find minimum of F

F  (u, uobs)

Inversion
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Statistical

• Grid Search Sampling
→Many simulations
→ Broad knowledge of cost function

ρ

η

F  (u, uobs)

Inversion
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Statistical

• MCMC Sampling
→ Few simulations
→ Requires fine-tuning

ρ

η
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• Bayes Theorem
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ρ

η

Inversion

Statistical

… many more methods 

• Bayes Theorem
→ Prior knowledge goes in sampling
→ Compute posterior
→ Uncertainty in parameters
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η

Gradient based:
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Gradient based [gradient descent]:

Inversion

Deterministic
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η
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Gradient based [(Quasi)-Newton]:

… more methods 

Hessian matrix
→ Relates to the

covariance matrix
in Bayesian context

Inversion

Deterministic

ρ

η
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• Few ‚simulations‘
• Sensitive to local minima

• How to evaluate gradient?

→ Here simple: analytical

→ Or FD:

Inversion

Deterministic

Gradient based:

ρ

η
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… n dimensions

• 5 rock phases in thermo-elasto-visco-plastic model = 40 parameters (=dimensions)
• Seismology: wavespeed at every node is a free parameter = # nodes parameters (billions)

→ Every viscosity free parameter = # nodes parameters

η η+ρ η+ρ+K
η+ρ+K+…

nD-
Inversion
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• Deterministic: Two solves per parameter with FD = 80 simulations (per descent iteration)
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… n dimensions

• Statistical: 40 parameters + 10 samples per parameter = 10^40 simulations
• Deterministic: Two solves per parameter with FD = 80 simulations (per descent iteration)

→More efficient gradient computation available?

η η+ρ η+ρ+K
η+ρ+K+…

nD-
Inversion
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• Adjoint method:
• Independent of # parameters (very efficient)
• Requires forward (nonlinear) + adjoint solve (linear) and gradient computation
→ Requires formulation of adjoint equation

… n dimensions

η η+ρ η+ρ+K
η+ρ+K+…

nD-
Inversion
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Method

Constrained optimization:
• Appears a lot: 

• E.g. Economics: Maximize profit 
in terms of labor hours and raw 
material with limited budget

• Logistics
• Thermodynamics
• …

Inversion

Deterministic
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→ Find lowest point of Hike
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Method

Inversion

Deterministic

I) National Park
II) Foggy day

→ Find lowest point of Hike
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Method

Constrained optimization:
• In our example:

1. Function represents mountain 
belt

2. Find lowest point of hike

Hiking trailValleys

Inversion

Deterministic

x

y
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• Function F(x,y) - topography
• Constraint g(x,y) – hike

F(x,y)

g(x,y)

Inversion

Deterministic

x

y
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Method

Constrained optimization:
• Function F(x,y) - topography
• Constraint g(x,y) – hike

→ Find common gradient along 
constraint

F(x,y)

g(x,y)

Inversion

Deterministic

x

y
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Method

Constrained optimization:

Inversion

Deterministic

F(x,y)

g(x,y)

x

y

→ Solve for x,y & λ
→ x & y = coordinates of minimum
→ [P(x,y) = lowest point→ λ = d(P)/d(Radius)]
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Adjoint method
(PDE – constrained optimization)

I) Field inversion

II) Vector (p) inversion
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(1)

Objective function (no regularization):

(2)

(3)

(4)

(5)

(6)
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(1)

Objective function (no regularization):

(2)

Stokes (inversion constraint, linear, no advection):

(3)

(4)

(5)

(6)
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(1)

Objective function (no regularization):

(2)

Stokes (inversion constraint, linear, no advection):

(3)

(4)

Lagrangian (constrained optimization):

(5)

(6)
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→ Find critical points of this function
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(1)

Objective function (no regularization):

(2)

Stokes (inversion constraint, linear, no advection):

(3)

(4)

Lagrangian (constraint optimization):

(5)

(6)
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→ Find critical points of this function

I. FP multiplied by some Lagrange multipliers (shape functions) 
is the weak form (FEM) of the FP

II. FP linear – (often) self- adjoint
III. If FP nonlinear – additional terms appear (e.g. viscosity

derivative) – like deriving Jacobian

IV. Gradient of parameter at every node – ‚field‘ inversion
V. Independent of discretization

VI. Can be derived for any variable that occurs in the equation, 
e.g. principal stress directions:

Reuber et al. (in prep)
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Approach implemented in LaMEM (equal result):

(1)

1) Objective function (no regularization):

(2)

(3)

(4)
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Approach implemented in LaMEM (equal result):

(1)

1) Objective function (no regularization):

(2)

2) Objective function derivative (final gradient sought):

(3)

(4)

First term = 0 (!= 0 if regularization)
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Approach implemented in LaMEM (equal result):

(1)

1) Objective function (no regularization):

(2)

2) Objective function derivative (final gradient sought):

(3)

2) Residual derivative (R = 0):

(4)

First term = 0 (!= 0 if regularization)
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Jacobian
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3) Substitute:

(5)

(6)

(7)

(8)

Vector
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3) Substitute:

(5)

(6)

4) Final:

(7)

(8)

Vector

5929/8/2019
Ada Lovelace Workshop 2019 

Georg Reuber



60

3) Substitute:

(5)

(6)

4) Final:

(7)

(8)

Vector
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Note: Two options to compute gradients with the adjoint method:
I) Converge forward problem – compute missing partial derivatives – reuse FP Jacobian - DtO
II) Write two codes – one for FP and one for AP – combine solution to compute Gradient - OtD
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What are these gradients good
for?

I) Obviously for gradient based
inversion

II) Sensitivity kernels in geodynamics –
resolution proxy

III) Automatic derivation of scaling laws
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Tromp et al. (2005)
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Tromp et al. (2005)
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Physical resolution test

Why not try in geodynamics as well?



→ What are the velocities at the surface most sensitive to?
→ Compute gradient as usual but use:
→ Sensitivity of solution to ρ + η at every node
→ E.g. resolution test in seismology

Geodynamic sensitivity kernels
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Vx Vz
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→ What are the velocities at the surface most sensitive to?
→ Compute gradient as usual but use:
→ Sensitivity of solution to ρ + η at every node
→ E.g. resolution test in seismology
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→ What are the velocities at the surface most sensitive to?
→ Compute gradient as usual but use:
→ Sensitivity of solution to ρ + η at every node
→ E.g. resolution test in seismology



Sensitivity

6729/8/2019
Ada Lovelace Workshop 2019 

Georg Reuber

Timestep 1

Absolute sensitivity: Density)
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Timestep 1

Timestep 50

Absolute sensitivity: Density)

Absolute sensitivity: Density)

Cheap! 
Can be done every timestep
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Automatic derivation of scaling
laws
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• Nondimensional 2 layer Rayleigh-Taylor instability
• Random perturbation at interface

Reuber et al., 2017
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• Nondimensional 2 layer Rayleigh-Taylor instability
• Random perturbation at interface

Reuber et al., 2017
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No cost function (as before)

Scaling law
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Reuber et al., 2017
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General (multiplicative) scaling law

No cost function!

Scaling law
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Reuber et al., 2017
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General (multiplicative) scaling law

Exponent

Prefactor

No cost function!

Scaling law
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Reuber et al., 2017
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→ Exact reproduction of analytical solution
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Several ‚domes‘ evolve

Reuber et al., 2017
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Several ‚domes‘ evolve

Reuber et al., 2017
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• Adjoint method very efficient:
• independent of number of parameters (‚field inversion‘)
• Can be derived for any parameter for any PDE

• Statistic methods:
• Full knowledge (topology) of cost function
• (Almost) No additional implementation required
• Numerical cost scales with number of parameters

• Deterministic methods:
• Gradient information

→ Reveals sensitivity of e.g. velocity on density – resolution test
→ Scaling law computable
→ Time integration
→ Hessian – link to statistic methods


