

Lightning induced aerosol formation: First aircraft and lightning laboratory measurements of gaseous and ionic acidic aerosol precursors

F. Arnold (1), R. Nau (1), U. Reichl, Ch. Muschik, V. Fiedler (1,2), A. Aufmhoff (1),
A. Roiger (2), H. Schlager (2), Ch. Lederle (3), and J. Kindersberger (3)

(1) Max-Planck-Institute for Nuclear Physics, Atmospheric Physics Division, Heidelberg,
Germany

(2) DLR-Institute for Atmospheric Physics, Atmospheric Trace Substances division,
Oberpfaffenhofen, Germany

(3) Technische Universität München, Laboratory for High Voltage Technology and Power
Transmission, Munich, Germany

Lightning and other atmospheric electrical discharges generate trace gases which are potentially important by influencing the atmospheric environment. Inside a lightning channel air is heated to temperatures in the order of 30000 K inducing air dissociation and ionization. After a lightning discharge there resides a plume of lightning generated atoms and ions which undergoes dilution and cooling by mixing with ambient atmospheric air. During plume ageing atoms and ions experience a complex chemical evolution resulting in the formation of numerous molecular trace species including also gaseous and ionic aerosol precursors.

We report on the first aircraft-based measurements of lightning generated acidic trace gases in young lightning plumes in a tropical thunderstorm cloud. The measured gases include HONO, HNO₃, and H₂SO₄ as well as the H₂SO₄ precursor SO₂. We also report on systematic measurements of acidic trace gases and acidic ions made in laboratory discharges including also lightning impulse discharges. Since H₂SO₄ and HNO₃ are important aerosol precursor gases we conclude that

lightning and other atmospheric electric discharges represent a source of new aerosol particles formed by nucleation.