

Transport of ^{13}C labeled Dissolved Organic Carbon in undisturbed Soil Columns at various unsaturated Flow reveals Fate and Mobility of DOC in Soil

I. De Troyer, J. Mertens, E. Smolders and R. Merckx

Division Soil and Water Management, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium,
Catholic University Leuven

(inne.detroyer@biw.kuleuven.be)

Dissolved Organic Matter (DOM) plays an important role in soil genesis and in the transport of soil pollutants with a high affinity for organic matter. It follows that understanding of DOM-facilitated transport of solutes and of organic matter dynamics in mineral soils requires information about the dynamics of DOM. A batch and a column experiment were set-up to investigate the influence of water flow rates and soil mineral nutrient concentration on the fate and mobility of DOC. Both used a ^{13}C labeled DOC solution prepared by incubating ^{13}C enriched plant material (5.7 g kg^{-1} dry soil, ^{13}C atom % excess = 3.16%) in soil for 3 days (aerobic, darkness, 20°C) and extracting its DOC with $\text{CaCl}_2 10^{-3} \text{ M}$ (soil:solution ratio 1:1). The sorption and mineralization characteristics of this labeled DO ^{13}C solution in a loamy soil were estimated in batch experiments. The loamy soil was sampled from the upper horizon of an agricultural field. From this horizon, 16 undisturbed soil columns (10 cm high, 6 cm diameter) were simultaneously sampled.

Prior to the start of the labeled DO ^{13}C column experiment, all columns were leached with a $\text{CaCl}_2 10^{-3} \text{ M}$ solution at a rate of 16 mm day^{-1} . Leaching the columns decreased the DOC concentration in the effluents from $24.4 \pm 6.1 \text{ mg C l}^{-1}$ to $7.8 \pm 3.8 \text{ mg C l}^{-1}$. The Specific UV Absorbance or SUVA of DOC in the column leachates was $29.6 \pm 4.8 \text{ l g}^{-1} \text{ cm}^{-1}$ and did not change significantly in time. A stop-flow increased the DOC concentration by, on average, 6 mg C l^{-1} suggesting that a fraction

of DOC is slowly released in soil. The SUVA value decreased by $14 \text{ l g}^{-1} \text{ cm}^{-1}$ after stop-flow, suggesting that the increase of DOC was unrelated to humic substances but to decaying biomass. Currently, a pulse of ^{13}C labeled DOC solution with and without added nutrients is being applied to the undisturbed soil columns at two different flow rates: 4 and 16 mm day^{-1} . Leachate volumes, DO^{13}C concentrations and Specific UV Absorbances (SUVA) of the column effluents are being monitored every two to three days. Preliminary results show unretarded breakthrough of the ^{13}C pulse but considerable degradation. Results will be used for the evaluation of a reactive transport model using sorption and mineralization characteristics measured in the batch experiment.