Geophysical Research Abstracts, Vol. 10, EGU2008-A-08456, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-08456 EGU General Assembly 2008 © Author(s) 2008

New and established forests turn N pollution into C stocks

F. Magnani (1), M. Borghetti (2), M. Mencuccini (3), S. Raddi (4), J. Grace (3)

(1) Department of Fruit Tree and Woody Plant Science, University of Bologna, Italy, (2) Department of Crop Systems, Forestry and Environmental Sciences, University of Basilicata, Italy, (3) School of GeoSciences, University of Edinburgh, UK, (4) Department of Forest Science and Technology, University of Firenze, Italy (fmagnani@agrsci.unibo.it / Fax ++39 51 2096401)

Forests are one of the main biomes on Earth and contribute substantially to C sequestration from the atmosphere, countering the effects of anthropogenic greengouse gas emissions. In contrast with tropical deforestation, expanding forests in temperate and boreal regions are also immobilizing C in soils and biomass. From the analysis of 60 time-integrated datasets from new (n=31) and established (n=29) forests, we suggest that forest C sinks are determined to a large extent by atmospheric N deposition, largely the result of anthropogenic N emissions from agriculture and fossil fuel combustion. The very high sensitivity of C sequestration to N deposition (C:N = 228:1) stems from the stroichiometry of biomass (and in particular woody biomass), which accounts for 91% of ecosystem C sequestration. The results have important implications for environmental policies aimed at managing the various components of anthropogenic global change as a whole.