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Neurocomputing is an emergent technology concerned with the application of artifi-
cial neural networks - in this paper for modelling systems within a hydrological con-
text. The most popular training algorithm for such networks is ’backpropagation of
error’ (Rumelhartet al., 1986; Tveter, 2004). This optimisation procedure provides an
efficient computational mechanism for evaluating the derivatives of the network per-
formance function with respect to a given set of network parameters. It corresponds
to a propagation of errors backwards through the network. The term has also been
adopted to describe feed forward multi-layered networks trained with the back propa-
gation algorithm. Networks of this type have emerged as major workhorses in various
areas of business and commerce; it is also the most common type of neural network
that has been used to perform hydrological modelling operations (Maier & Dandy,
2000). Indeed, for most explorations, the standard backpropagation neural network
is the first point-of-call and will often produce acceptable results. As such, the use
of more complex solutions will seldom, if ever, need to be investigated. Thus fresh
developments in neural network modelling should always be compared to standard
backpropoagation models in order to establish the potential advantages that are on of-
fer. Following the neural network procedures described in Dawson & Wilby (2001),
this paper reports on the construction and application of a standard backpropagation
neural network solution developed on the competition River Ouse Dataset. The se-
lection of modelling inputs was based on a statistical consideration of raw inputs and



moving averages. Trial and error was used to determine an optimal number of hidden
units. Early stopping, based on the use of a cross-validation dataset, was required to
prevent over fitting. The results are compared to multiple linear regression outputs
developed on identical inputs.
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