

Carbon isotope studies and lignin analysis of plants and soil organic matter detect vegetation changes in the southern Brazilian highlands

A. Dümic (1), P. Schad (1), C. Rumpel (2), M.-F. Dignac (2), H. Knicker (1), I. Kögel-Knabner (1)

(1) Lehrstuhl für Bodenkunde, Technische Universität München, Germany, (2) Centre INRA Versailles-Grignon, France (duemig@wzw.tum.de)

The isotopic and biochemical composition of plants, organic surface layers and humic substances from 13 soils was characterized to discover the origin of the present mosaic of grassland (C_4) and *Araucaria* forest (C_3). The bulk soils were separated into light and heavy fractions by density fractionation. ^{14}C dating and $\delta^{13}C$ values reflect a chronosequence of *Araucaria* forest expansion on grassland which started after 1300 yr BP. The $\delta^{13}C$ signature of lignin oxidation products (alkaline CuO oxidation, GC/C-IRMS) show that the differences between C_4 - and C_3 -derived phenols in the $^{13}C/^{12}C$ isotopic signature are similar to those in bulk material. In addition, the isotopic signature of lignin derived phenols indicate that the ^{13}C depletion with depth in old grassland soils results partly from the relative accumulation of ^{13}C -depleted lignins. Forest expansion on grassland is clearly shown by ^{13}C enrichment with depth and changes the composition of soil organic matter towards higher amounts of aliphatic compounds and lower aromatic C and O/N-alkyl C contents as detected by ^{13}C NMR spectroscopy. Thus, current grasslands represent relics from periods with drier climate than today in the early and mid Holocene and are not the result of recent deforestation.