Geophysical Research Abstracts, Vol. 10, EGU2008-A-02323, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02323 EGU General Assembly 2008 © Author(s) 2008

Kinetic S-34/S-32 fractionation during degassing and hydroxylation of hydrogen sulfide, and protonation of hydrogen bisulfide

M.E. Böttcher (1) and C. Piel (2)

(1) Leibniz Institute for Baltic Sea Research, Warnemünde, Germany, (2) Max Planck Institute for Marine Microbiology, Bremen, Germany (<u>michael.boettcher@io-warnemuende.de/Fax +49</u> 3815197352)

Transport of hydrogen sulfide across the sediment-water interface and diffusion into the atmosphere may occur in modern coastal marine environments with enhanced microbial activity in surface sediments and accumulation of dissolved H_2S in nearsurface pore waters. The process is also in discussion to have been involved during phases of mass extinctions during Earth's history (e.g, Permian-Triassic boundary). The transport process of H_2S will lead to a pH-dependent fractionation of the stable sulfur isotopes, which has so far only been investigated for selected acidic to neutral pH values, and no experiments have been conducted with seawater, sofar. S-34/S-32 fractionation during degassing of H_2S from aqueous solution was investigated experimentally at 21 ± 1 °C in the dominance field of dissolved hydrogen sulfide, bisulfide, and mixtures of both species, corresponding to pH values between 2.6 and 11. Overall isotope enrichment factors between -0.7 and +3.4%, were observed, with dissolved sulfide enriched in ³⁴S and ³²S compared to the liberated H₂S at low and high pH values, respectively. pH-independent isotope effects with respect to individual dissolved sulfur species are -0.7 (H2Saq) and +3.4 (HS-). Experiments in seawater solution showed no influence of increased ionic strenght on sulfur isotope effects. During the chemical absorption of gaseous hydrogen sulfide by an aqueous alkaline solution, S-32 is enriched in the dissolved bi-sulfide by about 7.5 per mil.