Geophysical Research Abstracts, Vol. 10, EGU2008-A-02286, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02286 EGU General Assembly 2008 © Author(s) 2008

Pure Iron Compressed and Heated to Extreme Conditions

A. S. Mikhaylushkin, S. I. Simak, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson, and I. A. Abrikosov

Theory and Modeling Division, Department of Physics, Chemistry and Biology (IFM), Linkoping University, S-581 83, Linkoping, Sweden (arkady@ifm.liu.se)

The results of a first-principles study supported by the temperature-quenched laserheated diamond anvil-cell experiments on the high-pressure high-temperature structural behavior of pure iron are reported. We show that in contrast to the widely accepted picture, the face-centered cubic (fcc) phase becomes as stable as the hexagonal close-packed (hcp) phase at pressures around 300-360 GPa and temperatures around 5000-6000 K. Our temperature-quenched experiments indicate that the fcc phase of iron can exist in the pressure-temperature region above 160 GPa and 3700 K, respectively. This, in particular, meansthat the actual structure of the Earth's core may be a complex phase with a large number of stacking faults.