Geophysical Research Abstracts, Vol. 10, EGU2008-A-02261, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02261 EGU General Assembly 2008 © Author(s) 2008

Transport of MS2 and PRD1 through saturated and unsaturated columns packed with sand

R. Anders (1,2), C.V. Chrysikopoulos (3)

(1) U.S. Geological Survey, 4165 Spruance Rd., Ste. 200, San Diego, CA, 92101, USA, randers@usgs.gov, (2) Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA, (3) Department of Civil Engineering, University of Patras, Patras 26500, Greece, gios@upatras.gr

Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the *Salmonella typhimurium* phage, PRD1. The mathematical model developed by *Sim and Chrysikopoulos* [2000] to quantify the processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media.