Geophysical Research Abstracts, Vol. 10, EGU2008-A-01872, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-01872 EGU General Assembly 2008 © Author(s) 2008

Large-scale ice-sheet modelling with horizontal stress gradients

R.C.A. Hindmarsh

Physical Science Division British Antarctic Survey, High Cross Madingley Road, Cambridge, CB30ET, United Kingdom

The increased understanding of the specific roles played by longitudinal/membrane stresses in ice-sheets mean that an ice-sheet model which includes such stresses can now be specified. It must contain sufficient physics to be able to represent (i) grounding line motion and the grounding line boundary layer; (ii) the role of longitudinal stresses in propagating ice-stream transients; (iii) the role of longitudinal/membrane stresses in delocalizing dissipative heating; and (iv) the role of warming of the upper surface in horizontal stress transmission. Numerical computations using spectral methods comparing the results of 3D higher order approximations (i.e. Blatter-type models) and 2D vertically integrated equivalents (super-MacAyeal models) are presented, as well as full Stokes solutions. Vertically integrated works very well for flat bottomed ice-streams, but is less accurate in the presence of high-relief topography. The vertically integrated solutions require much less computation. Spectral methods are inappropriate for models of the current and former ice-sheets. A finite difference implementation of the vertically integrated model is presented and an unconditionally stable marching scheme is assessed.