
Geophysical Research Abstracts,
Vol. 10, EGU2008-A-00553, 2008
SRef-ID: 1607-7962/gra/EGU2008-A-00553
EGU General Assembly 2008
© Author(s) 2008

Speeding up of the MOST Program
M. Lavrentiev Jr. (1,2), A. Romanenko (2)
(1) Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia, (2) Novosibirsk State
University, Novosibirsk, Russia (mmlavr@nsu.ru)

Recently MOST (Method of Splitting Tsunami) software package has been accepted
by the USA National Ocean and Atmosphere Administration as the basic tool to cal-
culate tsunami wave propagation and evaluation of inundation parameters. Acceler-
ation of codes should provide additional time for tsunami hazard mitigation. Part of
MOST software, responsible for calculation of wave propagation over deep ocean is
addressed. Perspectives of performance optimization through comparison of different
architectures and parallel techniques have been studied.

Wave propagation is simulated by nonlinear shallow water system. System is pre-
sented in special form, which admits splitting along coordinates. Nonlinear system is
solved by iterations. Each iteration consists of solution to linearized system by split-
ting. Numerical algorithm is described as follows:

1. read of input data and variables initialization;

2. for each time step deviation wave and velocity field are calculated along axis X and
then along axis Y.

Calculations along coordinates could be performed independently. This suggests per-
formance gain through program parallelization. Several technologies for algorithm
parallelization have been considered: two for distributed memory architectures (these
could be also applied for shared memory systems) and one for shared memory archi-
tectures. Both MPI and OpenMP technologies have been used.

For distributed memory systems the following parallelization strategy has been finally
chosen. Computational domain was split along Y axis to be addressed to different



processors. First, all processors perform calculations along X axis, Then the first pro-
cessor make calculation through the corresponding part of Y axis and pass result to
second processor through common boundary and so on. After completion of calcula-
tions along Y axis, all processors write results and repeat the loop. This means that
processors perform calculations with shift at one half of time step.

For shared memory systems iterations along coordinates were paralyzed. The best
performance have been achieved using static schedule type (i.e., each computational
thread has equal number of loop iterations).

For distributed memory architectures performance gains was 4 times for 8 processors.
Better acceleration, 4 times on 6 processors was achieved in case of shared memory.
Further increase in number of computational nodes does not result in additional per-
formance gain. Analysis of stagnation reasons suggests better result for combination
of distributed and shared memory parallelization.


