Geophysical Research Abstracts, Vol. 9, 10773, 2007

SRef-ID: 1607-7962/gra/EGU2007-A-10773

© European Geosciences Union 2007

1 Application of a Widely Tunable Near-Infrared Laser Instrument for Stable Isotope Ratio Measurements

J. COUSIN, S. PLUS, W. CHEN, E. FERTEIN, D. BOUCHER

Laboratoire de PhysicoChimie de l'Atmosphère, CNRS UMR 8101, Université du Littoral Côte d'Opale, 189 A, Av. Maurice Schumann, 59140 Dunkerque, France (chen@univ-littoral.fr)

In this paper, we report on the development and the application of a widely tunable near-infrared laser spectrometer for trace gas and isotope analysis. The spectrometer was based on fiber-coupled continuous-wave (cw) Telecom external cavity laser (ECDL, Tunics Plus) that is continuously tunable from 1500 to 1640 nm (C and L band) with an output power up to 3 mW and a tuning resolution of 0.001 nm ($\sim 4 \times 10^{-3} \ {\rm cm}^{-1}$). The effective laser linewidth is less than 1 MHz. A multipass cell (New Focus – model 5612) in Herriott configuration with an optical path of 100 m was used to enhance the detection sensitivity.

The developed instrument has been used for isotopic composition analysis in woodbased combustion emission and in human breath. In a wood-based combustion, the measured $^{13}\text{C}/^{12}\text{C}$ isotope ratio in CO $_2$ emission is found to be (1.1011±0.0040) % for the full burn operation regime. The corresponding δ -value relative to PDB standard is (-20.17±3.53) %, that is in good agreement with the typical value of (-25±2) %, for wood.