

Atmospheric measurements from the Ochsenkopf Tall Tower: a multi-species approach to studying the carbon cycle

R. Thompson (1), M. Heimann (1), A. Manning (2), and E. Gloor (3)

(1) Max Planck Institute for Biogeochemistry, Germany, (2) Now at the University of East Anglia, England, (3) Now at the University of Leeds, England

(rthompson@bgc-jena.mpg.de / Fax: +49 3641 577300 / Phone: +49 3641 576356)

Ochsenkopf (OXK) is a tall tower site for continuous high-precision measurements of atmospheric O_2 , CO_2 , CH_4 , CO_1 , N_2O and SF_6 , and was established as part of the CarboEurope-Atmosphere and CHIOTTO observation network. The tower is located at the summit (1022 m, 50°01'N, 11°48'E) of the Fichtelgebirge mountain range in northern Bavaria, a region where agriculture and forestry are the predominant land usages.

Air is sampled from 3 heights, 163, 90 and 23 m above ground level, and is analysed using a fuel-cell technique for O_2 (Sable Systems, model Oxzilla FC-II), a LICOR-6252 for CO_2 , and a Gas Chromatograph (Agilent 6890) for CH_4 , CO, N_2O and SF_6 . With a record of over 1 year, we present the diurnal and seasonal trends in O_2 and CO_2 as well as changes in the $O_2:CO_2$ [mol/mol] ratio. Changes in $O_2:CO_2$ on short to long timescales can be used to study the changing influence of fossil fuel burning, terrestrial eco-system and ocean-atmosphere exchanges on the atmospheric concentrations. In addition, we will present trends in CH_4 , CO and N_2O and the effectiveness of using CO and SF_6 as tracers for anthropogenic sources of CO_2 .