Geophysical Research Abstracts, Vol. 9, 09330, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-09330 © European Geosciences Union 2007

TErahertz and submm LImb Sounder (TELIS)

"Development and characterization a cryogenic THz heterodyne receiver for TELIS"

N. Suttiwong, U. Mair, M. Birk, G. Wagner, S. Cherednichenko Remote Sensing Technology Institute, DLR Oberpfaffenhofen

nopporn.suttiwong@dlr.de / Phone: +49-8153-28-3186 / Fax: +49-8153-28-1337

In order to investigate atmospheric trace gas distributions associated with, e.g. ozone destruction, TELIS (TErahertz and sum Limb Sounder) has been developed, a new state-of-the-art balloon borne three channel (500, 625, 1800 GHz for RAL, SRON and DLR respectively) cryogenic heterodyne spectrometer. The instrument applies stateof-the-art superconducting heterodyne technology operated at 4K and is designed to be compact and lightweight, while providing broad spectral coverage within the submillimeter and far-infrared spectral range, high spectral resolution and long flight duration (\sim 24 hours duration during a single flight campaign). Measurements with the 1.8 THz receiver will focus on the OH species. Further stratospheric species will be measured in the frequency range 1.8 THz \pm 40GHz. The cryogenic receiver installed on a 26 cm. diameter optical bench will utilize 2 Martin-Puplett interferometers as single-side-band filter and diplexer, a solid state local oscillator and a hot electron bolometer as mixer. Currently the 1.8 THz channel has been successfully characterized in double-side-band mode and single-side-band mode. The quality assessment of the radiometric accuracy was taken out by measurement of methanol gas sample in a glass cell. Results on sensitivity and radiometric error will be presented.