Geophysical Research Abstracts, Vol. 9, 09004, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-09004 © European Geosciences Union 2007

Under-water light regime and SPM: a multiple-grain size model and SmartBuoy observations

J. van der Molen (1), K. Bolding (2), N. Greenwood (1), D.K. Mills (1)

The Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK,
Bolding & Burchard Hydrodynamics, Asperup, Denmark

(j.vandermolen@cefas.co.uk / Phone: +44-1502-527768)

Accurate representation of light attenuation by inorganic suspended particulate matter (SPM) is a major restriction in developing coupled physical-biogeochemical models that are used to model primary production in shelf seas. The main problem is the accurate calculation of SPM concentrations. A multiple-grainsize advection-diffusion method is presented, and results are compared to observations. The method was incorporated in the 1DV General Ocean Turbulence Model (GOTM), along with a method to calculate light-attenuation coefficients. A sediment pickup formulation was used, based on upward diffusion from a dynamic reference concentration near the sea bed that depends on local waves and currents. The sea bed is assumed to consist mainly of a coarse fraction. Model results are compared with multi-year time series of surface-observations of SPM and light attenuation on 'SmartBuoy' at two sites on the UK shelf, showing good agreement for daily-averaged values. The method will be extended to include the biogeochemical model BFM, and will be extended to 3D in the near future.