Geophysical Research Abstracts, Vol. 9, 07561, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-07561 © European Geosciences Union 2007



## A dynamical systems approach to land-atmosphere coupling.

**J.K. Hughes** (1), P.J. Valdes (1), R. Betts (2)

(1) Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), University of Bristol, UK, (2) Hadley Centre, Met Office, FitzRoy Road, Exeter, UK (J.K.Hughes@bristol.ac.uk / Fax: +44 (0)117 928 7878 / Phone: +44 (0) 117 92 88290)

In order to investigate the coupling of land and atmosphere a particular land surface model is investigated, the MOSES2-TRIFFID land surface model, which includes dynamic global vegetation. MOSES2-TRIFFID is currently used in the HadUM3 General Circulation model (GCM) and has been important in the IPCC reports. A number of assumptions built into the model will be reviewed, including the low-pass filter hypothesis. The structure of MOSES2-TRIFFID dynamics are then analyzed, focusing on the dynamic vegetation component (TRIFFID). This work shows that in TRIFFID the low-pass filter frequency may change, in effect coupling or decoupling the land surface response to a given atmospheric variability. By modulating its own response to climate variability TRIFFID incorporates a new spectral mechanism for the coupling of land and atmosphere, and raises the question of whether this occurs in the real world.