

## Constraining transient times of of bimodal age spectra in the UTLS using in-situ measurements

**P. Hoor**(1), H. Bönisch(2), A. Engel(2), H. Fischer(1), C. Gurk(1), P. Jöckel(1), J. Lelieveld(1)

(1)Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany

(2)Institut für Atmosphäre und Umwelt, J. W. Goethe Universität, Frankfurt, Germany

Based on in-situ measurements of  $CO_2$  and  $N_2O$  we present a method to determine transient times in the lowermost stratosphere. Traditionally mean values of  $CO_2$  in the stratosphere have been assigned to the the mean age of air in a particular region. However, the latter holds only for the stratosphere at  $N_2O < 250$  ppbv, where the seasonal cycle of  $CO_2$  is dampenend due to quasi horizontal mixing in the stratosphere. Below, where the seasonal cycle of  $CO_2$  is evident, age spectra are best represented by bimodal functions consisting of a young fraction representing rapid transport from the troposphere with short transient times and a slow part. Thus, the mean age largely differs from the respective transient time since it is the result of bimodal transient time distribution. Besides the simple  $CO_2$  mean on  $N_2O$  isopleths, the respective transient time of the young peak of the age spectrum can be deduced from the  $N_2O-CO_2$  correlation. The latter is deduced from in-situ measurements and compared to age spectra based on the same data. Furthermore, the method might also provide a possibility to test transport time scales and origin of air masses in GCM's and CCM's.