Geophysical Research Abstracts, Vol. 9, 06927, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06927 © European Geosciences Union 2007

Sub-seasonal reconstructions of South Pacific climate during the last deglaciation from Tahiti corals preliminary results from IODP Expedition 310

T. Felis (1), R. Asami (2), P. Deschamps (3), M. Kölling (1), N. Durand (3), E. Bard (3), IODP Expedition 310 Scientists

(1) Department of Geosciences & DFG-Research Center for Ocean Margins, University of Bremen, Bremen, Germany, (2) Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan, (3) CEREGE, CNRS, UMR 6635, Aix-en-Provence, France

The Integrated Ocean Drilling Program (IODP) Expedition 310 "Tahiti Sea Level" aimed to recover the coral reef record of the last deglacial sea-level rise in the South Pacific. During this Mission-Specific Platform (MSP) Expedition, more than 600 m of cores with an exceptionally recovery were retrieved from 37 holes drilled into the drowned reefs around the island of Tahiti, in water depths between 41 and 117 m. A total of 30 m of the reef cores consist of massive coral colonies, mostly of the genus *Porites.* The aragonitic skeletons of such annually-banded corals provide the unique opportunity to study changes in seasonality and interannual climate variability in the South Pacific that might have occurred during the last deglaciation. Sub-seasonally resolved records of oxygen isotopes and Sr/Ca derived from well-preserved and welldated (U-series dating) coral skeletons will provide reconstructions of variations in temperature and hydrologic balance at the sea surface. Here we present preliminary results of sub-seasonally resolved coral records from Tahiti for selected time windows during the last deglaciation. Comparing such coral-based climate reconstructions of periods with boundary conditions different from today with state-of-the-art climate model simulations might also help to assess the validity of future greenhouse projections.