Geophysical Research Abstracts, Vol. 9, 06863, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06863 © European Geosciences Union 2007

Wind Influence on the Glacial Ocean Circulation

A. Paul (1), J. Franke (1), M. Kucera (2), S. Mulitza (1)

(1) Fachbereich Geowissenschaften, Universität Bremen, Postfach 33 04 40, D-28334 Bremen, Germany (Email: apau@palmod.uni-bremen.de, Fax: x49-421-218-7040), (2) Institut für Geowissenschaften, Eberhard-Karls-Universität Tübingen, Sigwartstrasse 10, D-72076 Tübingen, Germany

We studied the effect of changes in the wind-stress field on sea-surface and sub-surface water-mass properties (mainly temperature, but, e.g. also nutrient and dissolved oxygen concentrations) at the Last Glacial Maximum, using the University of Victoria Earth-System Climate Model. The changes in the wind stress field were obtained from fully-coupled PMIP2 simulations. We compared our results to other models as well as to glacial reconstructions (e.g. by projects such as GLAMAP - Glacial Atlantic Ocean Mapping and MARGO - Multi-proxy Approach for the Reconstruction of the Glacial Ocean Surface) in terms of an 'objective function' that quantified the misfit as a weighted sum of root-mean square errors. Our questions included: By how much can we improve the fit to the reconstructed sea-surface temperature (SST) by merely changing the wind-driven part of the ocean circulation? What does a glacial SST reconstruction tell us about the thermohaline-driven part of the ocean circulation? Without changes in the wind-stress field the structure of the sea-surface anomalies turned out to be very zonal, i.e. there were almost no differences in the east-west direction. Changes in the wind-stress field brought about a significant change in the spatial anomaly patterns. Furthermore, through various feedbacks (e.g. advection, evaporation, sea-ice), they could cause both, an appreciable strengthening or weakening of the meridional overturning circulation.