Geophysical Research Abstracts, Vol. 9, 06412, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06412 © European Geosciences Union 2007

Lévy flights with variable stability index

I. Pavlyukevich

Department of Mathematics, Humboldt-University Berlin (pavljuke@mathematik.hu-berlin.de)

We consider a dynamical system $dX^{\varepsilon}(t) = -U'(X^{\varepsilon}(t-)) dt + \varepsilon dH(X^{\varepsilon}(t-),t)$, which can be seen as a random perturbation of a deterministic dynamical system $dX^{0}(t) = -U'(X^{0}(t)) dt$. The random process H is a Lévy flights process with a variable stability index (a stable-like process), whose instant jump distribution depends on the current position of the process.

In case of a multi-well potential U, we describe the limiting dynamics of X^{ε} as $\varepsilon \to 0$, in particular, transition times and probabilities between different wells. We show how the process X^{ε} can be used to model multi-scale phenomena.