

Kinetic Mechanism of Solid Alkanes Oxidation in the Troposphere. EPR Study.

Yu. Gershenzon (1), A. Stepanov (1), A. Zasypkin (1), A. Ivanov (2), and M. Molina (2)

(1) Semenov Institute of Chemical Physics RAS, Moscow, Russia, (2) University of California, San Diego, USA (gershenzon@center.chph.ras.ru / Fax: 7-495-6512191)

A special type of flow tube reactor was developed for online EPR registration of solid alkoxy radicals, which were formed in reaction of $H + O_2$. These alkanes coated the aerosil surfaces. The total surface area of coating was approx. 10^3 cm^2 . After switching on the H atom discharge flow, the alkoxy radical concentration increases linear with time. After some period of time the rate of reaction becomes slower and after switching off the H atom flow, the alkoxy radicals growth stops. After additional introduction of O_2 the level of radicals falls fast.

Typical experimental conditions are:

at the beginning of RO increasing $H = 5*10^{12} \text{ cm}^{-3}$, $O_2 = 10^{13} - 10^{14} \text{ cm}^{-3}$,

when H atoms are off: $O_2 = 10^{14} - 10^{16} \text{ cm}^{-3}$.

The mechanisms of paraffin wax and tetracosane oxidation were studied. The rate constants of H + RH and RO + O₂ were determined: $\gamma = (5.5 \pm 0.3) \times 10^{-4}$; k = (1.7 ± 0.3) $\times 10^{-17}$ cm³ s⁻¹.

There were also estimated the rate constants of four reactions of R, RO, RO₂ proposed by Molina et al. for qualitative mechanism of organics oxidation [1].

We plan to develop the quantitative mechanism of solid saturated organics oxidation.

The work was supported by Russian Foundation for Basic Research (grant 06-05-64602).

Reference

1. M.J. Molina, A.V. Ivanov, S. Trakhtenberg, and L.T. Molina, Geophys. Res. Lett., 2004, V. 31, L22104