Geophysical Research Abstracts, Vol. 9, 04662, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-04662 © European Geosciences Union 2007

An Analysis of Turbulent and Radiative Flux Gradient Relationships in the Highly Stable Polar Surface Layer

C. W. Fairall (1) and A. A. Grachev (1, 2)

(1) Physical Science Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA (Chris.Fairall@noaa.gov/ Phone 303-497-3253), (2) Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder CO, USA

Flux-profile relationships in the turbulent surface layer are conventionally scaled with Monin-Obukhov similarity theory where, for example, the vertical gradient of potential temperature is proportional to the *surface value* of the turbulent heat flux, Hf, divided by the friction velocity, u*. In stable conditions an additional factor is applied to account for the effects of buoyancy using the dimensionless gradient function Phi_h(z/L) where z is the height above the surface and L is the Obukhov length:

dT/dz=-Hf/(rho cp kappa u* z)*Phi_h(z/L)

Here kappa is 0.4 and (rho*cp) the heat capacity of air. The gradient function has been determined by direct observations in numerous field campaigns. However, for extreme stability limits (z/L>1) the near-surface air temperature gradient is substantial and IR-radiative flux gradients may confuse the interpretation of Hf from observations at typical tower heights. Furthermore, the IR-flux divergence may lead to distortions of the temperature profile very near the surface. In this paper we will present a formulation of the problem derived from the basic heat conservation equation. The importance of the radiative effects will be evaluated with a simple band-integrated transfer model using data from the Surface Heat Budget of the Arctic (SHEBA) program. Radiative flux divergence may explain different behavior of Phi_m and Phi_h observed in the SHEBA data for very stable conditioins.