Geophysical Research Abstracts, Vol. 8, 09669, 2006

SRef-ID: 1607-7962/gra/EGU06-A-09669 © European Geosciences Union 2006

Eddy covariance measurements of monoterpenes and oxidation products over a Ponderosa pine plantation in Central California.

R. Holzinger (1,2), A.H. Goldstein (1)

(1) Division of Ecosystem Sciences, University of California, Berkeley, USA, (2) now at Institute for Marine and Atmospheric (IMAU), Utrecht University, The Netherlands (holzing@nature.berkeley.edu)

Photo-oxidation has been shown to be extraordinarily strong at the Blodgett forest site, a Ponderosa pine plantation at the western slope of the Sierra Nevada Mountains in Central California, USA. Chemical reactions with ozone in the forest canopy dominate the flux during summer; stomatal uptake and dry deposition account for less than 50% of the ozone deposition into the ecosystem. Reactions of ozone with alkenes are a net source of HO-radicals and therefore it is likely that chemical ozone loss produces additional oxidants in the canopy and oxidation products have been detected with a PTR-MS system by measuring gradients through the canopy. During an intensive field campaign in summer 2005 we measured ecosystem fluxes of the sum of isoprene + methyl-butenol (MBO), total monoterpenes, and an oxidation product with an eddy-covariance system. The compounds were detected with a PTR-MS instrument at molecular weights of 69, 137, and 113 amu; typical fluxes were 4-18, 2-6 0.4-1.5 umol/m2/h for MBO+isoprene, monoterpenes, and the oxidation product, respectively. Production of oxidation products, co-spectra, and parameters controlling the day to day variation of the fluxes will be discussed.