Geophysical Research Abstracts, Vol. 8, 09568, 2006 SRef-ID: 1607-7962/gra/EGU06-A-09568 © European Geosciences Union 2006

Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15 N tracers

O. Mathieu, C. Hénault, J. Lévêque, M.-J. Milloux, F. Andreux and E. Baujard (1) UMR 1229 Microbiologie et Géochimie des Sols, INRA-Université de Bourgogne, Centre des Sciences de la Terre, 6 boulevard Gabriel, 21000 Dijon, France (Olivier.Mathieu@u-bourgogne.fr)

Microbial transformations of nitrification and denitrification are the main sources of nitrous oxide (N₂O) from soils. Relative contributions of both processes to N₂O emissions were estimated, on an agricultural soil using ¹⁵N isotope tracers (¹⁵NH₄⁺ or ¹⁵NO₃⁻), for a ten-day batch experiment. Under unsaturated and saturated conditions, both processes were significantly involved in N₂O production. Under unsaturated conditions, 60% of N-N₂O came from nitrification, while denitrification contributed around 85-90% under saturated conditions. Estimated nitrification rates were not significantly different whatever the soil moisture content, whereas the proportion of nitrified N emitted as N₂O changed from 0.13% to 2.32%. In coherence with previous studies, we interpreted this high value as resulting from the decrease in O₂ availability through the increase in soil moisture content. It thus appears that, under limiting aeration conditions, some values for N₂O emissions through nitrification could be underestimated.