Geophysical Research Abstracts, Vol. 8, 08989, 2006

SRef-ID: 1607-7962/gra/EGU06-A-08989 © European Geosciences Union 2006

What is the strength of ' CO_2 -calcification' feedback on future fossil fuel CO_2 uptake?

A. Ridgwell (1), I. Zondervan (2), J. Hargreaves (3), T. Lenton (4), and J. Bijma (5) (1) Department of Earth and Ocean Sciences, University of British Columbia, Vancouver BC, Canada [andy@seao2.org], (2) Biogeosciences, Alfred Wegener Institute for Polar- and Marine Research, Am Handelshafen 12, Bremerhaven, Germany [izondervan@awi-bremerhaven.de], (3) Frontier Research Center for Global Change, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan [jules@jamstec.go.jp], (4) School of Environmental Sciences, University of East Anglia, Norwich, UK [T.Lenton@uea.ac.uk], (5) Biogeosciences, Alfred Wegener Institute for Polar- and Marine Research, Am Handelshafen 12, Bremerhaven, Germany [jbijma@awi-bremerhaven.de].

Understanding the strength of the 'CO₂-calcification' feedback; the enhancement of fossil fuel CO₂ uptake by the ocean due to a reduction in marine carbonate production, is critical if we are to accurately predict the future trajectory of atmospheric CO₂. To do this, computer models of the ocean carbon cycle have typically been informed by the *in vitro* response of the coccolithophorid *Emiliania huxleyi* to a decrease in ambient carbonate ion concentration. However, analysis of the experiments carried out to date across a range of calcifying plankton species leads us to suspect that the CO₂-calcification feedback could be much more important than previously assumed. Furthermore, analysis of the anthropogenic CO₂ impact on marine calcification has yet to include the effect of synchronous changes in climate. We address these issues and the uncertainties surrounding the strength of the CO₂-calcification feedback with the aid of an ensemble of instances of the GENIE-1 Earth system model. We find that an additional ca. 200 PgC could be sequestered in the ocean by the end of this millennium.