Geophysical Research Abstracts, Vol. 8, 08541, 2006 SRef-ID: 1607-7962/gra/EGU06-A-08541 © European Geosciences Union 2006

\mathbf{CO}_3^{2-} concentration and \mathbf{pCO}_2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

K. Yates and R. Halley

U.S. Geological Survey, Center for Coastal and Watershed Studies, 600 Fourth Street South, St. Petersburg, FL 33701 (kyates@usgs.gov / Phone: 727-803-8747)

The severity of the impact of elevated atmospheric pCO₂ to coral reef ecosystems depends, in part, on how seawater pCO_2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO₂ and CO_3^{2-} to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO₂ on calcification and dissolution processes. Rates of net calcification and dissolution, CO₃²⁻ concentrations, and pCO₂ were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.003 to 0.23 g CaCO₃ m⁻² h⁻¹ and dissolution ranged from -0.005 to -0.33 g CaCO₃ m⁻² h⁻¹. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO₂ and CO_3^{2-} at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO_3^{2-} and pCO₂. Threshold pCO₂ and CO_3^{2-} values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654 \pm 195 μatm and ranged from 467 to 1003 $\mu atm.$ The average CO_3^{2-} threshold value was 152 \pm 24 μ mol kg $^{-1}$, ranging from 113 to 184 μ mol kg⁻¹. Ambient seawater measurements of pCO₂ and CO₃²⁻ indicate that CO₃²⁻ and pCO₂threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO_2 concentrations. It is predicted that atmospheric pCO₂will exceed the average pCO₂threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.