Geophysical Research Abstracts, Vol. 8, 06250, 2006 SRef-ID: 1607-7962/gra/EGU06-A-06250 © European Geosciences Union 2006

Frictional control on aftershock rupture planes and implications for crustal strength

C. Collettini and F. Trippetta

(1) Geologia Strutturale Geofisica, Dipartimento di Scienze della Terra Università di Perugia, Perugia, Italy , (colle@unipg.it).

Moderate to large mainshock-fault-ruptures nucleating in extensional and compressional intracontinental environments are well explained by 2D frictional fault reactivation theory (Sibson and Xie, 1998; Collettini and Sibson, 2001). Here we use a 3D slip tendency analysis (e.g. Morris, 1996; Lisle and Srivastava, 2004) to test whether also aftershocks are governed by frictional reactivation theory. We observe that aftershocks for two well-documented seismic sequences occurred in extensional and compressional environments, respectively the 1997 Mw=5.9 Colfiorito sequence (Central Italy) and the 1999 Mw= 7.6 Chi-Chi sequence (Taiwan), occur on planes favourably oriented for frictional fault reactivation within the regional stress field. In particular, 86.6% of 329 events and 87.5% of 115 events for the Colfiorito and Chi-Chi sequences respectively, are well explained by 3D fault reactivation theory. In addition, the percentage of well oriented aftershock rupture planes reaches 100%, if we consider a magnitude threshold of M=3.7 for the Colfiorito sequence and M=5.0 for the Chi-Chi one.

The consistency of the aftershock ruptures with frictional fault reactivation theory constrained from the regional stress field, suggests that stress drop induced by the mainshocks – usually in the range of 1-10 MPa with occasionally values as high as 100 MPa (Kanamori and Heaton, 2000)- is not enough to totally release the tectonic stress level, in other words the crust is strong. In addition, the 100% well-explained earthquakes above a magnitude threshold indicates that stress perturbations induced by the mainshock are capable of influencing only small structures.

References

- Collettini, C., Sibson, R. H., 2001. Normal Faults Normal Friction?. Geology, 29,

927-930.

- Kanamori, H, Heaton, T. H., 2000. Microscopic and macroscopic physics of earthquakes. AGU Monograph Series, 120, 147-163.

- Lisle, R. J., Srivastava, D. C., 2004. Test of frictional fault reactivation theory for faults and validity of fault-slip analysis.

- Morris, A., Ferril, D. A., Henderson, D. B., 1996. Slip-tendency analysis and fault reactivation. Geology, 24, 275-275.

- Sibson, R.H., and Xie, G., 1998, Dip range for intracontinental reverse fault ruptures: Truth not stranger than friction? Seismological Society of America Bulletin, v. 88, p. 1014-1022.