Geophysical Research Abstracts, Vol. 8, 04180, 2006 SRef-ID: 1607-7962/gra/EGU06-A-04180 © European Geosciences Union 2006

Measuring partitioning behavior of environmental chemicals

H.C. Tülp (1,2), K. Fenner (1,2), R.P. Schwarzenbach (2)

 (1) Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland (holger.tuelp@eawag.ch, kathrin.fenner@eawag.ch, schwarzenbach@eawag.ch),
(2) Department of Environmental Sciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.

There is a great variability in polarity, size and functional groups of organic agrochemicals. Therefore this presentation focuses on the properties of chemicals.

The fate of a chemical in the soil is subject to partitioning processes. A mechanistic approach to quantify molecular interactions that govern partitioning processes is provided by polyparametric linear free-energy relationships (pp-LFERs). They allow the calculation of the equilibrium partitioning of a neutral chemical in any given twophase system using one single equation.

Today, one of the most widely applied pp-LFER is the Abraham equation:

log k= eE + sS + aA + bB + vV, where log k is the equilibrium partitioning constant and the five parameter pairs quantify the molecular interactions between any given two phase-system and the chemical.

These parameters can be used as a precise physico-chemical characterization in order to model and predict the transport and fate of chemicals in the environment.

However, for complex environmental chemicals, e.g. pesticides, there is still a lack of substance parameters and the calculation of those using group-contribution approaches like Absolv is inaccurate to date. Therefore a liquid chromatography method for determining substance parameters for environmental chemicals is being developed and validated and will be presented. Results will be compared to predictions from a group-contribution approach.