Geophysical Research Abstracts, Vol. 8, 01895, 2006 SRef-ID: 1607-7962/gra/EGU06-A-01895 © European Geosciences Union 2006

Coupling between the solar wind and the Earth during the coronal mass ejection with northward IMF rotation

E. Belenkaya

Institute of Nuclear Physics, Moscow State University, Russia (elena@dec1.sinp.msu.ru)

The interaction of coronal mass ejection with the Earth's magnetosphere is considered for the specific case in which there is a sharp increase in the dynamic pressure (interplanetary shock) that is associated with a simultaneous northward turning of the interplanetary magnetic field (IMF). The large-scale topology of magnetic reconnection is described for this case. It was found that under these conditions, the so-called transition current system exists temporary in the high-latitude magnetosphere. In this three-dimensional system, the energy is transferred from the solar wind across the magnetopause to the Earth by the field-aligned currents. The transition current system includes the field-aligned NBZ-currents, the ionospheric Pedersen currents in the region of open field lines in the polar caps, and the field-aligned currents concentrated at the ionospheric open-closed field line boundary. The MHD generator of the solar wind is connected to the ionosphere by the NBZ currents. They are distributed poleward of the Region I field-aligned currents and their intensity increases approaching the cusp. We consider the dependence of the distribution of field-aligned currents in the transition current system to the radial and azimuthal components of the solar wind magnetic field.