Geophysical Research Abstracts, Vol. 8, 01372, 2006 SRef-ID: 1607-7962/gra/EGU06-A-01372 © European Geosciences Union 2006

Field application of a constant head circulation flow test and parameter estimation

C. S. Chen, T. G. Lan, G. L. Li

Applied Geology Institute, National Central University, Taiwan, ROC

chenchia@cc.ncu.edu.tw

The constant head circulation flow test (CHCFT) is a single-well hydraulic test for the estimation of the horizontal and vertical hydraulic conductivity (K_r and K_z) and the storage coefficient S. In the test well, a pneumatic packer separates the well screen into an upper section of a length L_u and a lower section of L_l . With respect to the initial water table, a positive constant head H_l is maintained in L_l by water injection while a constant drawdown H_u is maintained in L_u by pumping with automatic flow rate adjustment. As a result, the injected water moves form L_l through the aquifer into L_u in a vertical circulation fashion. The injection rate $Q_I(t)$ and the pumping rate $Q_P(t)$ are measured above ground for the parameter estimation. As H_l is easily controlled unequal to H_u , $Q_I(t)$ is not equal to $Q_P(t)$ even if $L_u = L_l$, resulting in an asymmetric vertical circulation flow field that takes a relatively long period to reach the steady state condition. A mathematical model for the CHCFT is developed, and the type curves of $Q_I(t)$ and $Q_P(t)$ are generated for a curve matching technique of determining Kr, Kz, and S. A CHCFT was performed in a silty sand unconfined aquifer, where recharge due to the water table decline was negligible. The curve-matching results in $K_r = 5.21 \times 10^{-6}$ m/sec, $K_z = 3.39 \times 10^{-6}$ m/sec, and $S = 8.6 \times 10^{-2}$. The value of S is higher than the upper bound of $5x \ 10^{-3}$, possibly due to the negligence of some recharge from the water table decline. The K_r value compares favorably with the estimate of 2.8×10^{-6} m/sec determined by a constant-head injection test in a nearby well, Kz could not be determined in that constant-head injection test.