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Predictability of multifractals processes and geophysics
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Time complexity is associated with sensitive dependence to initial conditions and se-
vere intrinsic predictability limits [1], in particular the "butterfly effect’ paradigm: an
exponential error growth and a corresponding characteristic predictability time. This
was believed to be the universal long-time asymptotic predictability limits of complex
systems.

However, turbulence and geophysics are complex both in space and time and have
rather different predictability limits: a limited uncertainty on initial and/or boundary
conditions over a given subrange of time and space scales grows across the scales and
there is no characteristic predictability time. We showed [2] that complexity in space
implies strong limitations on the applicability of the Multiplicative Ergodic Theorem
(MET, [3]) and of the Liouville equation [4].

The relative symmetry between time and space yields scaling (i.e. power-law) de-
cays of the predictability, as confirmed by homogeneous turbulence phenomenology
and statistical closure models [5, 6]. Unfortunately, the quasi-normal framework of
these models prevents them from dealing with intermittency: the “bursts” of the en-
ergy fluxes through scales, as well as those of information loss [7].

We show that multifractals [8] offer a very convenient framework to quantify the pre-
dictability of space-time complex systems with the help of an infinite hierarchy of
exponents. Furthermore, this hierarchy is defined in a straightforward manner for a
large class of space-time multifractal processes. We also show that the corresponding
scaling function can be used to empirically quantify the predictability of geosystems,
as well the performance of forecast procedures. In particular, this readily explains
the recent empirical evidence that stochastic subgrid parametrizations do better than



deterministic ones [9, 10].
These results will be illustrated with the help of various numerical simulations,
1. Lorenz, E.N., Deterministic nonpereodic flow. J. Atmos. Sci., 1963. 20: p. 130-141.

2. Schertzer, D. and S. Lovejoy, Space-time Complexity and Multifractal Predictabil-
ity. Physica A, 2004. 338(1-2): p. 173-186.

3. Oseledets, V.I., A multiplicative ergodic theorem.lyapunov characteristic numbers
for dynamical systems. Trans. Mocscow Maths Soc., 1968. 19: p. 197-231.

4. Ehrendorfer, M., The Liouville equation and its potential usefulness for the predic-
tion of forecast skill. Part I: Theory. Mon. Wea. Rev., 1994. 122: p. 703-713.

5. Leith, C.E. and R.H. Kraichnan, Predictability of turbulent flows. J. Atmos. Sci,
1972. 29: p. 1041-1058.

6. Lorenz, E.N., The predictability of a flow which possesses many scales of motion.
Tellus, 1969. 21: p. 289-307.

7. Marsan, D., D. Schertzer, and S. Lovejoy, Causal Space-Time Multifractal mod-
elling of rain. J. Geophy. Res., 1996. D 31(26): p. 26,333-26346.

8. Schertzer, D. and S. Lovejoy, Uncertainty and Predictability in Geophysics: Chaos
and Multifractal Insights, in State of the Planet, Frontiers and Challenges in Geo-
physics, R.S.J. Sparks and C.J. Hawkesworth, Editors. 2004, AGU: Washington. p.
317-334.

9. Houtekamer, P., et al., A system simulation approach to ensemble prediction.
Monthly Weather Review, 1996. 124: p. 1225-1242.

10. Buizza, R., M.J. Miller, and T.N. Palmer, Stochastic Simlulation of Model Uncer-
tainties in the ECWMF Ensemble Prediction System. Q. J. R. Meteorol. Soc., 1999.
125: p. 28887-2908.



