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Introduction

Theoretical and the experimental research of geomechanical oscillatory processes al-
low to study the influence of geophysical parameters on instabilities, such as the earth-
quake process. Unstable phenomena like earthquakes can occur in geomechanical sys-
tems which have the unstable equilibrium state at some set of critical geophysical pa-
rameters [1]. There are two fields of geophysical parameters, corresponding to stable
and a unstable states. According to a theorem formulated in [1,2], there will be eigen
vibratory movements of the geosystem for the stable field, and the frequencies will
tend to zero as the system approaches unstable equilibrium (exact before earthquake).
The critical wave length of vibrations at zero frequency remain finite, however, and
characterize the size of the instability i.e. the dispersion wave motion before catastro-
phe event (for example earthquake) differs from usual dispersionω = ck. A change of
eigen frequencies affects the seismoacoustic emission spectrum in the area surround-
ing an impending earthquake. This change indicates that the geomechanical system is
close to an unstable threshold, and the critical wave length determines the energy and
space dimensions of the developing instability, or earthquake.

The important term "unstable equilibrium" implies such state of a system, when two
(and may be more) forces applied at rock massif balance each other. Such equilibrium
could exist at certain values of elasticity and density of the geomechanical systems.
These two main forces are the tectonic (in the end gravity) force and the effective
friction force along fault. Equilibrium conditions can be violated if the friction force
will decrease relative to the gravity (tectonic) force due to changing of the system’s
elastoplastic parameters values. Therefore such equilibrium is unstable. In that case



the phenomena which will cause the slip instability start to develop. The larger dif-
ference between tectonic (gravity) force and friction one is the faster slip instability
process should be.

The goal of our study is the analysis of geomechanical events, which should accom-
pany earthquake preparation at its evolution towards the unstable equilibrium i.e. di-
rectly up to the catastrophic threshold when rapid failure occurs. There is a possibility
to find the prognostic phenomena indicating such approach to the unstable equilibrium
state and by that to predict time and scale of the earthquake. It can be done with a help
of the general theorem, concerning the unstable equilibrium state systems.

Universal precursor theorem

The study of the universal earthquake precursors is based on a general theorem con-
cerning the behavior of geomechanical systems as they approach instability (catastro-
phes threshold):

If the system has the state of the unstable equilibrium at some set of the critical param-
eters describing it and this set separates areas of the parameters values relevant to a
stable state and unstable state of the system then in stable parameters area external load
would cause eigen oscillation of the system with frequencies, which will tend to zero
if the system approaches unstable equilibrium at the finite critical wavelengths [1,2].
Firstly the basic idea of this theorem was formulated in [3].

According to the theorem any catastrophe (earthquake) should be preceded by slow
oscillation of some parameters describing the system which can have the state of the
unstable equilibrium. Frequency of these eigen wave motions tends to zero as ap-
proaching an instability threshold.

It is possible to give some examples of preliminary behaviour before catastrophe
threshold for such systems: alternating vertical and horizontal tectonic motions be-
fore orogeny, slow movements of the daylight surface, registered prior to earthquakes
by the geodesic methods at a former Garm’s polygon (Tadjikistan) of the Institute
of Physics of the Earth, the onset of the slip instability along faults [4], simulating
processes of earthquake, rock burst and fracture development which are preceded by
the waves propagating along faults – trapped waves [5], slow wave motions before
earthquakes in the Caucasus, Turkey, Balkans (the Black Sea region) where seiche
oscillations have been registered as a result of these wave motion [6].

All these examples are characterised by the presence of the unstable equilibrium state



at certain values of system parameters. Genesis of such equilibrium is equality of
tectonic forces and friction forces of rock formation. The processes of the fracture’s
activation (or of the formation of new rupture) and consequent movement along it at
a catastrophic stage take place in case of earthquakes. Therefore it is useful to note
observed phenomena preceding such a catastrophic event as an earthquake.

Observable phenomenon of the low seismicity splash and its disappearance directly
before relatively strong earthquake can be explained by the frequency decreasing of
the waves while approaching of the geophysical parameters values of the future earth-
quake source to the critical values relevant to a catastrophic threshold. Since seis-
mological equipment can register only those oscillations, which frequency fall within
registration range, consequent low frequency oscillations could be missed by seismic
network, but can be recorded by broadband instruments. Besides in the system with
dissipation it is possible actual silent directly before the earthquake when any dis-
turbance attenuates, but more and more slowly as approaching a catastrophic thresh-
old [1]. In any case these two stages (at first oscillatory and then aperiodic) of the
prognostic precursor should present always, as they are essential parts of the earth-
quake source evolution towards the instability threshold.

Moreover, the considered wave deformation process preceding catastrophe, can initi-
ate other precursor which have different physical nature: increasing of the radon abun-
dance and changing of the water level in boreholes as the consequence of the crust per-
meability increasing at its periodic deformations, or the electrical and electromagnetic
phenomena in atmosphere and ionosphere [7] which can appear due to functioning
of the electrohydrodynamic and electroelastic mechanism of the electric field gener-
ation and, hence, of the electromagnetic radiation [8]. The same can be exemplified
by the above mentioned registration of the seiche oscillations in Black Sea [6], which
directly correspond to the slow waves motion. Seiche oscillations are generated due
to resonance phenomenon when the changing frequency of the pre-earthquake slow
waves fall within the seiches frequency range. We can also note that the same effect
of the seismoacoustic background noise frequency decreasing is observed before the
rock bursts in mines and during laboratory experiments of fault formation [9]. Thus,
random perturbations will grow as the system will develop from its initial state to a
new one, due to energy transfer at a catastrophic stage of the process.

Theorem substantiation

The formulation of the theorem is done within the framework of linearized stability
theory. It means, that nonlinear system is studied with perturbation theory, associated



with linearized equations in partial derivatives. The linearized stability theory states,
that if there is any solution of the linearized equations which grow with time, then
the basic state we are studying is unstable. The proof of our theorem is simple for the
case of conservative (nondissipative) systems. We shall give it here in order to explain
the physical sense of the problem. Equilibrium of a system means, that solving the
equations of elasticity (generally the linearized equations in partial derivatives), with
some boundary conditions, we will get dispersion equation∆(k, q) = 0, wherek is
wave number andq is one or more dimensionless parameters (depending on elastic
and density physical characteristics of the system). The solution of this equation gives
the critical wave numberkc = 2π/Lc at someqc (Lc is wavelength) and the subscript
"c" refers to the critical value. For the dynamic (time-dependent) problem with the
same boundary conditions, the characteristic (dispersion) equation isf(ω, k, q) = 0,
whereω is angular frequency. In the limitω → 0, must bef(ω, k, q) → ∆(k, q). In
this limit, we can carry out the expansion of the dispersion equationf(ω, k, q) = 0
to orderω2 (as the system is conservative). Then to a first approximation, we shall
obtain:

f(ω, k, q) ≈ ∆(k, q) + (∂f/∂ω2)ω=0 ω2 = 0 (1)

From here, a key relation at once follows:

ω2 ≈ −∆(k, q)/(∂f/∂ω2)ω=0 (2)

In the neighborhood ofkc = 2π/Lc, the function∆(k, q) will have different sign
on either side ofkc. Consequently on one side ofkc, ω will be imaginary, giving
an exponentially growing solution, and on the another side,ω is real, giving an os-
cillatory solution. Thus for a conservative system, a simple but general mathemat-
ical analysis shows, that slow wave motion precedes and forecasts instability and
shows what the catastrophic phenomena should be. The behavior of dissipative sys-
tems is more complicated as the equation for frequency will depend also on derivatives
(∂f/∂ω2)ω=0. In this case, frequency appears complex and the behavior of the real
and imaginary parts of frequency becomes more complicated than for systems without
dissipation [1].

In mathematical and physical literature, the study of solutions of linearized equations
in partial derivatives, describing the behavior of perturbations of nonlinear processes
in geomechanical systems, is conducted in order to understand the conditions of insta-
bility. In this proposed work, we will concentrate our study on the frequency behavior
of a system near the threshold of the instability, to elaborate methods of the earthquake
forecasting. Such approach is effective and was not systematically applied before as
we know.



The onset of slip instability

It is accepted by majority geophysicists, that earthquakes are connected close with de-
velopment of the slip instability along faults. Consequently it is desirable to study such
instability using well known Lyapunov’s approach which essence is to study the solu-
tion of the linearized equations. These equations describe wave motion disturbances
of the basic system state. And the basic system behavior is described by the corre-
sponding nonlinear system. The main point of the Lyapunov’s method is statement
that if it will be found any solution of the linearezed equation which grow with time
then basic state must be considered unstable. Namely our universal precursor theorem
is closely connected with Lyapunov’s approach as it was marked above.

So we will study the propagation of elastic waves along fault with velocity and dis-
placement dependent friction as the perturbation of uniform slip speed. The fault sep-
arates two identical elastic half spaces. The mathematical statement of the problem is
formulated as follows. Wave motion of the elastic media is described by well known
elastic equations for displacementu:

ρ
∂2u

∂t2
+ µcurl curlu− (λ + 2µ)∇divu = 0 (3)

whereλ andµ are Lame parameters. The stress-strain relationship is taken in Hooke’s
Law form:

σik = λdivuδik + µ

(
∂ui

∂xk
+

∂uk

∂xi

)
(4)

We consider two-dimensional plane strain problem with thex - axis along andy - axis
directed perpendicular to the fault. Dependance on the third coordinatez we disregard.
To formulate finally mathematical problem with equations (3) and (4) we set boundary
conditions as follows: 1. Exponential attenuation of the solution perpendicular to the
fault direction; 2. Continuity of the fault-normal displacements and continuity of nor-
mal and shear stresses across fault; 3. Shear stress must satisfy the linearized friction
low with discontinuity of the longitudinal displacement across fault:

σ(1)
xy (x, 0, t) = χP

(
u(1)

x (x, 0, t)− u(2)
x (x, 0, t)

)
(5)

where indexes (1) and (2) mark half-spaces 1 and 2 respectively,P is pressure on
the fault andχ is functional derivativeχ = δf/δu of the frictional coefficientf :
χ(x, v, t) = (a + iωb)ux wherea = (∂f/∂x)0 andb = (∂f/∂v)0 (the subscript
"0" indicate derivative inx = x0, v = v0) at thatux � x0 and∂ux/∂t � v0.



For propagation of waves along the fault we specify dependance of all displacements
periodically on time andx coordinate:

u(i)(x, y, t) = u(i)(y) exp{i(ωt− kx)} (6)

wherek = 2π/λ is wave number. For media (1) the general solution of equations (3)
satisfying the boundary condition 1 is:

u(1)
y =

[
C

2
(e−α1y + e−α2y) +

Dk

(α2 − α1)
(e−α1y − e−α2y)

]
exp{i(ωt− kx)} (7)

u
(1)
x = i

[
A
2

(
α1
k

e−α1y + k
α2

e−α2y
)

+ Bk
(α2 − α1)

(
α1
k

e−α1y − k
α2

e−α2y
)]

exp{i(ωt− kx)}
(8)

whereα1 = k
√

1− c2/c2
s, α2 = k

√
1− c2/c2

p, andc = ω/k, c2
s = µ/ρ, c2

p =
(λ + 2µ)/ρ. For media (2) corresponding solution is:

u(2)
y =

[
C

2
(eα1y + eα2y) +

Dk

(α2 − α1)
(eα1y − eα2y)

]
exp{i(ωt− kx)} (9)

u
(2)
x = −i

[
A
2

(
α1
k

eα1y + k
α2

eα2y
)

+ Bk
(α2 − α1)

(
α1
k

eα1y − k
α2

eα2y
)]

exp{i(ωt− kx)}
(10)

Equations (7), (8) and (9), (10) employ the convention that they-axis is directed into
media (1). This convention is maintained throughout. ConstantsA, B, C, andD are
determined from boundary conditions 2 and 3 at the surface separating the two elastic
half-spaces.

The dispersion equations relating frequencyω and wave numberk of the propagating
wave are obtained by a standard method, substituting the solution (7), (8) and (9), (10)
into the boundary conditions and using Hooke’s Law (4):√

1− c2

c2
s

√
1− c2

c2
p

−
(

1− c2

2c2
s

)2

= −q
c2

2c2
s

√
1− c2

c2
s

(11)

wherec = ω/k – phase velocity andq = χP/kµ. If the right side of equation (11)
equals zero, we obtain the exact equation for a Rayleigh wave. For other case, the
speed of wave propagation along fault depends on the frictional characteristics of the



surface. This introduces displacement dependence that is specified by the dimension-
less parameterq = χP/kµ, whereχ is slope of the friction coefficient f on relative
displacement.

It is difficult to find the dependence of the speedc on friction parameters unless the
analytical dependence of the friction coefficient is specified. In the general case, such
an analytical expression may by impossible to obtain as it strongly depends on chang-
ing physical and chemical conditions of the frictional surfaces. But some conclusions
can be made for the limiting case of low wave speed, whenc/cs � 1. This case is
both interesting and easy to study. For this purpose we decompose the left side of (11)
keeping terms up to second power ofc/cs or c/cp. We obtain:

(λ + λ2)
c2

c2
s

+ i
4πbcs

|a|
+ 4(λ + λ1) = 0 (12)

whereλ – wave length of the wave disturbance, propagating along fault,

λ1 =
2πµ

(
c2
p − c2

s

)
c2
pPa

and λ2 =
2πµ

[
1−

(
c2
p − c2

s

)2
/2c4

p

]
Pa

two characteristic wave length which value is determined by inverse slopea of the
friction coefficient in dependence on displacement.

Model problem studying here describes wave propagating along fault with amplitude
which exponentially attenuates perpendicular to the fault direction. Therefore such
wave has name trapped wave [5]. As we mentioned its phase velocity depends on the
friction characteristics of the fault surfaces and the friction history (valuea).

It is important that in the limitω → 0 (or c → 0) from (12) followsλ = −λ1, i.e.
there exist stationary solution problem we are studying with characteristic wave length
disturbance|λ1|. It means that the conditions of the universal precursor theorem are
fulfill. Then we can state taking into account this theorem that uniform slip along fault
is unstable and takes place stick-slip motion ifa < 0 i.e. friction depends on dis-
placement inversely. Each episode of the instability correspondents to the catastrophic
transition (earthquake) from one evolution process with uniform slip to another one.
During evolution the friction coefficient is changing (for example decreasing due to
a < 0) preparing our system, consisting of two elastic half-space which divided by
fault, to the new catastrophic stage.



Conclusions
Experience of the retrospective prediction

To predict the earthquake means to find out the phenomena which accompany the
evolutional process of the earthquake preparation. The formulated universal precur-
sor theorem [1,2] let us such possibility. Namely we have to find the low frequency
shift of the seismicity spectra which must exists before earthquake. As it was shown
in [3] such kind of precursor is short term precursor, i.e. the most important. The
rate of the seismic spectra shift can show us the time of catastrophe- earthquake.
And the critical wave length can clarify the dimension of the earthquake source (in
the end the earthquake magnitude). This critical wave length could be found using
unusual dispersion of the wave preceding to earthquake. Of course to work up cor-
responding spectra is rather difficult problem. But it was successfully and carefully
done by G.A. Sobolev [10,11] on the base some physics and mathematics assumption.
It was shown that seismic spectra maximum shifts before Kamchatka strong earth-
quakes in low frequency range in accordance with universal precursor theorem [1,4].
Another experiment of retrospective prediction was made in Sevastopol using data
of measurements by laser strainmeter. It was found that before Romanian earthquake
(10.27.2004,M = 5.9) took place shift of the Black Sea seiche oscillations in low
frequency range (private information by V. Nasonkin and O. Boborikina). As it was
mentioned before Black Sea seiche oscillations are generated by slow wave motion
before earthquake in the Black Sea region. It is necessary to emphasize that registra-
tion of the low frequency oscillations, which are precede to the earthquake can be done
more successively by broad range equipment, as it was demonstrated in K. Kasahara’s
book [12]. There is low frequency on the presented by him seismogram, registered
due to Alaska earthquake (03.28.1964,M = 8.5).
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