Geophysical Research Abstracts, Vol. 7, 10491, 2005

SRef-ID: 1607-7962/gra/EGU05-A-10491 © European Geosciences Union 2005

Introduction of the new EQSAM2 inorganic/organic aerosol model framework with application to various measurements (SMOCC, MINOS, FACE, MOHp)

S. Metzger (1), I. Trebs (2), A. Hoffer (2), M.O. Andreae (2), J. Lelieveld (1), and the SMOCC, MINOS, FACE, MOHp teams

- (1) Max Planck Institute for Chemistry, Air Chemistry Department, Mainz, Germany,
- (2) Max Planck Institute for Chemistry, Biogeochemistry Department, Mainz, Germany (metzger@mpch-mainz.mpg.de)

To study the gas/aerosol partitioning of atmospherically relevant species with the aid of regional and global models, an extended version of the computationally efficient thermodynamic gas/aerosol model, EQSAM2 (equilibrium simplified gas/aerosol model), will be introduced. Besides gas/liquid/solid partitioning of the ammonium-sulfate-nitrate-water-system, EQSAM2 considers sodium, chloride (Na $^+$, HCl, Cl $^-$) and mineral compounds (K $^+$, Mg $^{++}$, Ca $^{++}$). In addition to inorganic compounds, a lumped approach that incorporates low molecular weight organic acids and humic-like substances has been introduced.

EQSAM2 has been successfully applied to experimentally derived data during different campaigns in the Amazon Basin (LBA-SMOCC 1), the Mediterranean region (MINOS 2), an industrialized and heavily populated region of Frankfurt/Rhein-Main (FACE 3), and to continuous observations at a global aerosol watch (GAW) site in Germany (MOHp 4).

The updated model framework will be discussed together with main results of the inorganic/organic gas/aerosol systems.

¹Large Scale Biosphere Atmosphere Experiment in Amazonia, Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate. September to November, 2002

² Mediterranean INtensive Oxidant Study, Crete, Greece, July and August 2001

³ Feldberg Aerosol Characterization Experiment, Germany, July and August 2004

⁴ Meteorological Observatory at Hohenpeißenberg, Germany, 2003