Geophysical Research Abstracts, Vol. 7, 09513, 2005 SRef-ID: 1607-7962/gra/EGU05-A-09513 © European Geosciences Union 2005

The High-latitude Aurora During Steady Northward Interplanetary Magnetic Field and Changing IMF B_y

J. A. Cumnock

(1) Center for Space Sciences, University of Texas at Dallas, (2) Alfvén Laboratory, Royal Institute of Technology, Stockholm (cumnock@utdallas.edu)

High-latitude transpolar arcs (TPAs) are often observed during northward Interplanetary Magnetic Field (IMF), of these, theta aurora are seen when transpolar arcs move in the dawn or dusk direction across the entire polar region in response to IMF B_y changes. Periods of study were chosen when B_y changes sign during steady northward IMF, in order to determine the influence of IMF B_x , B_y , the strength of the IMF, the solar wind, and Earth dipole tilt on the occurrence and motion of high latitude TPAs forming theta aurora. For a 4.5-year period there are 55 events for which IMF B_z is northward for at least 2 hours before, and at least 3 hours after a B_y sign change. Of these, 19 occurred when the POLAR satellite was over the northern hemisphere for the duration of the event. We find that for northward IMF and a B_y sign change theta aurora are almost always formed in the northern hemisphere, regardless of B_x and dipole tilt. This implies that theta aurorae form simultaneously in both hemispheres. IMF B_y does not appear to influence the intensity and duration of the arc. Strongest UV emissions occur in the summer hemisphere. Evolution time has a fairly complex dependence on solar wind parameters.