Geophysical Research Abstracts, Vol. 7, 09440, 2005

SRef-ID: 1607-7962/gra/EGU05-A-09440 © European Geosciences Union 2005

Accessory zircon in orogenic to post-orogenic granites and pegmatites: compositional variations as indicator of magmatic evolution. An example from Western Carpathians, Slovakia.

P. Uher

Dept. of Mineral Deposits, Faculty of Natural Sciences, Comenius University, Mlynská dolina G.

842 15 Bratislava, Slovakia. puher@fns.uniba.sk

A detailed electron-microprobe study of accessory zircon from Hercynian orogenic to pre-Alpine post-orogenic, Carboniferous to Lower Triassic granite-(pegmatite) suites of the Western Carpathians (Slovakia) revealed some characteristic features and differences between principal granite-pegmatite petrogenetic groups: S-, I-, A-, specialized S-type granites and pegmatites of the S- and I-type granites.

Zircon of collisional orogenic S-type granites (360-340 Ma) shows progressive increasing of Hf content from center to rim of the crystals, from 1.46 to 1.82 wt.% HfO_2 in average ($Zr/Hf_{wt.} = 41.2$ and 32.9, respectively), an evidence of magmatic fractionation of the granites. Orogenic I-type granites (360 – 300 Ma) reveal a slightly lower Hf abundances (centers 1.43, rims 1.59 wt. % HfO_2 in average, $Zr/Hf_{wt.} = 41.7$ and 37.1, respectively), which indicates a lower degree of I-type magma fractionation in comparison to the S-type group.

Zircon from Permian to Triassic, post-orogenic A-type granites (280-235 Ma) reveal different compositions: Hf contents are generally lower, especially for hypersolvus granites (centers 0.96, rims 1.04 wt.% HfO₂in average, Zr/Hf $_{wt.}$ = 61.3 and 56.8, respectively). However, metamict late- to post-magmatic zircon II of A-type group contains around 2 wt.% HfO₂ and elevated Y, REE, U, Th, Al, Fe and Ca contents. The zircon compositions from A-type group reflect a specific magmatic evolution of hot and dry F-rich alkaline magma in comparison to mainly H₂O-bearing calc-alkaline

magma of the S- and I-type groups.

Post-orogenic, Permian specialized (tin-bearing) S-type granites (270-245 Ma) also show two zircon compositions. An early magmatic zircon of slightly fractionated two-mica granites contains around 1.5 wt.% HfO_2 ($Zr/Hf_{wt.} = 40.4$) in average, without apparent increasing in Hf from center to the rim of crystals. On the contrary, probably late-magmatic zircon from highly-fractionated leucogranites with rare-element Li-Sn-W-Nb-Ta mineralization shows up to 9 wt.% HfO_2 (3.6 wt.% HfO_2 in average, $Zr/Hf_{wt.} = 19.4$) as well as up to 2.8 wt.% P_2O_5 and elevated U, Y and REE contents.

The pegmatites of the S- and I-type granites as the most-fractionated magmatic members reveal also the highest Hf concentrations in zircon: up to 22.2 and 15.5 wt.% HfO_2 in S-type and I-type granitic pegmatites, respectively. The Hf enrichment in pegmatite zircon generally correlates with a presence of rare-element Be-Nb-Ta mineralization (beryl, columbite-tantalite, etc.). Similarly to late-magmatic A- and specialized S-type granites, metamict zircon of the pegmatites shows also higher P, Y, REE, U, Th and Ca contents with apparent xenotime substitution (Y,REE)P(Zr,Hf) $_{-1}Si_{-1}$.