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1 Introduction
Thermal convection in a fluid subject to differential heating and the influence of strong
background rotation occurs in many natural systems, including the atmospheres,
oceans and interiors of planets. The ability to model such phenomena with quanti-
tative precision is vital, e.g. for prediction of weather and climate on Earth.

The nonlinear dynamics and routes to chaos of baroclinic waves of a rotating fluid
subjected to lateral heating as found in a laboratory experiment, the baroclinic annu-
lus, and in 3D Direct Numerical Simulation (DNS) are discussed here. A fluid in an
annular channel, rotating around its vertical axis of symmetry, is subjected to a radial
temperature gradient by maintaining the concentric, cylindrical sidewalls at different
temperatures. Flows observed in this system cover a vast range of phenomena ranging
from a stable baroclinic zonal flow to highly irregular flow, the ‘geostrophic turbu-
lence’[1]. For intermediate experimental conditions, a variety of baroclinic waves are
observed, which can be steady flow patterns drifting through the annular chamber,
or time-dependent with an oscillation of their strength (Amplitude vacillation, AV)
or shape (Structural vacillation, SV). More complex flows arise when several wave
modes co-exist and undergo mutual nonlinear interactions.

The three main parameters controlling the flow in this system are usually the Prandtl
number,Pr = ν/κ, the ratio of the kinematic viscosity to the thermal diffusivity,
The Taylor number,T = 4Ω2ν−2 (b − a)5d−1, and the stability-parameter or ther-
mal Rossby number,Θ = gdα∆T Ω−2(b− a)−2, with a the inner radius,b the outer



radius,d the annulus height,Ω the rotation rate of the annulus,∆T the imposed tem-
perature difference between the side walls,ρ the density, andα the volume expansion
coefficient.

The focus of this paper is the transition sequence from a steady wave to chaotic mixed-
mode vacillations via amplitude vacillation. The main techniques used are phase space
reconstruction, with estimation of dimension and Lyapunov exponents, and a mutual
phase coherence measure of the different waves to estimate the strength of the nonlin-
ear triad wave-wave interactions.

2 The experimental results
The apparatus is an annular convection chamber with an inner, cooled side wall of
radius 25mm, and outer, heated side of radius 80mm, and a height of 140mm, which
is mounted on a turntable[1,2]. The fluid is a water-glycerol mixture. It has long been
established that a steady wave may develop amplitude vacillation if the rotation rate
or Taylor number,T , is decreased or if the temperature difference or thermal Rossby
number,Θ, is increased. This corresponds to the occurrence of amplitude vacillation
before a mode transition to thenext-lowerwave number. It has also been found that
the parameter range over which a wave shows amplitude vacillation becomes larger as
the Prandtl number increases.

Previous experiments[1] on the transition of a steady wave 3 to chaotic modulated
amplitude vacillations (3MAV) at a Prandtl number 26 suggested that the 3AV may
develop a modulation via a sideband interaction, i.e. a dominant mode 3 interacts with
modes 2 and 4. This suggestion was modified later[2], resulting in a more complex
interplay of nonlinear wave interactions involving competing wave triads as well the
sideband instability and wave-mean flow interactions; steady waves and frequency-
locked vacillations (i.e. cases which are more regular than the generic vacillation)
show sideband interaction; most quasi-periodic or chaotic flows show mainly resonant
triad interaction with the long wave, while irregular flows show little phase coherence.

Experiments at a lower Prandtl number of 13, where the extent in parameter space
of the AV and, even more, the MAV regimes was much smaller, have confirmed the
general observation from [2]. Some differences were observed, both in terms of the
interactions of the same dominant mode in fluids of a different Prandtl number and of
flows with different wave numbers at the same Prandtl number.

The main difference between the two values of the Prandtl number was that not only
the parametric extent of the vacillating regimes was much smaller in the the lower
Prandtl number but also that fewer complex regimes were found between the regular
AV and the mode transition to the next lower mode. Furthermore, the degree of phase
coherence, indicative of wave-wave interactions was generally much less in the steady



flows and the regular AV flows.

3 The numerical results
The mathematical model[3,4] corresponds to the Navier-Stokes equations coupled
with the energy equation using the Boussinesq approximation applied to the buoy-
ancy, centrifugal and Coriolis accelerations for air as the working fluid with a Prandtl
number of0.7. The system is made dimensionless by introducing the following ref-
erence scales:Ω/2 for time,gβ(Tb − Ta)Ω/2 for velocity. The scaled temperature is
defined as(T − T0)/(Tb − Ta) with T0 = 0.5(Tb + Ta), whereTa andTb are the
temperature of the inner and outer radius, respectively. The space variables(r, z) are
normalized into the square[−1, 1]× [−1, 1].

The time integration used is second order accurate and corresponds to a combination
of an explicit Adams-Bashforth for the non-linear terms and an implicit backward dif-
ferentiation formula for the diffusive terms. The space discretization utilizes a pseu-
dospectral collocation Chebyshev polynomials in the meridional plane(r, z) associ-
ated with Fourier series in the azimuthal direction. The numerical algorithm is based
on an efficient projection scheme to solve the coupling between the velocity and the
pressure, which ensures a divergence-free velocity field at each time step. This model
has shown its ability to reproduce the expected features over a range of parameter
values[4,5].

As one might have expected from the much lower Prandtl number of air, no vacillation
was found on increase ofΘ or decrease ofT . However, time-dependent flows were
found at the other end of the parameter range. As the Taylor number,T , is increased,
a steady wave of mode 2 first develops a regular amplitude vacillation. This develops
later on a quasi-periodic modulation which then becomes chaotic. Figure 3 illustrates
the character of the vacillation and its modulation in the return maps of the maximum
wave amplitude. The single dot in the first indicates that the vacillation is a periodic
2AV. The closed line in the second indicates that the amplitude maximum in each
vacillation cycle follows a regular modulation of a quasi-periodic 2MAV. The third
shows that the vacillation is no longer regular. This case is also shown as a time series
covering about 14 vacillation cycles. All showed strong phase coherence of mode 2
in the resonant triad with modes 1 and 3, although the phase relationship depended
somewhat on the amplitude of mode 2. The degree of coherence did not seem to be
affected by the transition to the quasi-periodic 2MAV but was reduced significantly
on the transition to the chaotic 2MAV.

4 Conclusions
The laboratory experiment and the DNS showed regime progressions from steady
waves to quasi-periodic vacillations and chaotic flows. Nonlinear wave interactions



appeared to be strong factors in the transition from regular, steady baroclinic waves to
quasi-periodic and chaotic complex mixed-mode flows, where both in the experiment
and the DNS a reduction in the phase coherence was associated with a reduction in
the ’order’ of the flow.

Despite all similarities between experiment and DNS, a major discrepancy is the posi-
tion of the vacillating states in the parameter space, towards lowerT in the experiment
and towards higherT in the DNS. This apparent discrepancy will be discussed in de-
tail.
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