Geophysical Research Abstracts, Vol. 7, 06168, 2005 SRef-ID: 1607-7962/gra/EGU05-A-06168

© European Geosciences Union 2005

Branch-Level NO_x Fluxes of Scots Pine

M. Raivonen (1), T. Vesala (2), L. Pirjola (3), N. Altimir (1), P. Keronen (2), M. Kulmala (2), M. J. Sanz (4) and P. Hari (1)

(1) Department of Forest Ecology, University of Helsinki, Finland, (2) Department of Physical Sciences, University of Helsinki, Finland, (3) Department of Technology, Helsinki Polytechnic, Finland, (4) Fundación CEAM, Valencia, Spain (maarit.raivonen@helsinki.fi / Fax: +358-9-19158100

We present some results from our measurements of nitrogen-oxide (NO_x) fluxes of Scots pine. The fluxes were monitored using branch chambers at the SMEARII station in Hyytiälä, southern Finland. The site is located in rural area where the ambient NO_x concentration usually stays very low. The measured NO_x fluxes were small, consequently, the chamber blank needed to be determined carefully. Even when covered with Teflon film, the production of NO_x on the chamber walls was significant. It depended on the solar ultraviolet radiation, and it constantly increased while the Teflon was not replaced.

Also the pine shoots produced NO_x when UV light was present. We have been investigating the possibility that the emissions from the chamber and the shoots would originate from nitrate/HNO₃ photolysis on the surfaces. The branches inside our chambers accumulated more nitrate than the free branches since the chamber protected them from rain. Some preliminary results indicate that a small amount of nitrate in a chamber can cause a UV-dependent rise in NO_x concentration when measured with this kind of system.

Deposition of NO_x occurred rarely at our site because of the low NO_x concentrations. Sometimes in cloudy weather and with exceptionally high ambient concentration, the NO_x uptake into the stomata and the needle surfaces exceeded the NO_x production. We have studied how these two processes, NO_x consumption and UV induced production, determine the net NO_x flux and the compensation point of the flux in a pine branch.