Geophysical Research Abstracts, Vol. 7, 05667, 2005 SRef-ID: 1607-7962/gra/EGU05-A-05667 © European Geosciences Union 2005

Trace element, Sr and Pb isotopic zoning in K-feldspar megacrysts from the Monte Capanne monzogranite (Elba, Italy): evidence for a multi-stage crystallization history

D. Gagnevin (1), J.S. Daly (1), G. Poli (2), D. Morgan (3) and T.E. Waight (4)

(1) Department of Geology, University College Dublin, Belfield, Dublin 4, Ireland, (2) Department of Earth-Sciences, Piazza Università, 06100 Perugia, Italy, (3) Department of Geological Sciences, University of Durham, South Road, Durham DH1 3LE, UK, (4) Geological Institute, Øster Volgade 10, 1350 Copenhagen K, Denmark (damien.gagnevin@ucd.ie)

Zoned K-feldspar megacrysts from the Monte Capanne pluton (7 Ma) display indented resorption surfaces near their rims, which result from crystal dissolution and subsequent regrowth following magma mixing. Ion microprobe profiles reveal complex zoning in Ba, Rb, Sr and P. The rims and the outer cores of the megacrysts generally have higher Ba, lower P and lower Rb/Sr ratios compared with the inner cores, although the zoning is often more complex especially in megacrysts with several resorption surfaces (e.g., reverse Ba zoning, low Rb/Sr).

Trace element zoning correlates with Sr isotopic zoning obtained by microdrilling. Initial 87 Sr/ 86 Sr ratios decrease from core to rim, although the variation is very variable. Inner core analyses define a mixing trend in an isochron diagram extending towards a high I_{Sr} - 87 Rb/ 86 Sr melt component, while the outer core and rims display a more restricted range of isotopic variation, but a large range of 87 Rb/ 86 Sr.

In situ Pb isotopic analyses by Laser Ablation MC-ICPMS also reveal zoning in 208 Pb/ 206 Pb and 207 Pb/ 206 Pb that is sympathetic with Pb elemental variations. The core regions display a common rimward decrease in 208 Pb/ 206 Pb and 207 Pb/ 206 Pb, while the rims have higher 208 Pb/ 206 Pb and 207 Pb/ 206 Pb.

The isotopic and trace element profiles are the result of growth-zoning in melts

of varying composition, instead of secondary diffusive equilibration, as shown by concentration-weighted isotopic diffusion modelling. Early megacryst growth (i.e. the inner core region) occurred in magmas contaminated by crust (high ⁸⁷Sr/⁸⁶Sr and ²⁰⁸Pb/²⁰⁶Pb) and refreshed by influx of silicic melts (intermediate ⁸⁷Sr/⁸⁶Sr and low ²⁰⁸Pb/²⁰⁶Pb), while later stages (i.e. the rim and outer core) record recharge with mantle-derived magmas (low ⁸⁷Sr/⁸⁶Sr, high ²⁰⁸Pb/²⁰⁶Pb), and crystal fractionation, with possible interaction with hydrothermal fluids. This model reconciles observed geochemical and isotopic whole-rock patterns, as well as the extensive field occurrence of mafic enclaves and metasedimentary xenoliths.