Geophysical Research Abstracts, Vol. 7, 04940, 2005 SRef-ID: 1607-7962/gra/EGU05-A-04940 © European Geosciences Union 2005

Statistical study of relationships between high-altitude and high-latitude O+ ion outflow and solar/geomagnetic activity

S. Arvelius (1), M. Yamauchi (1), H. Nilsson (1), I. Sandahl (1), R. Lundin (1), H. Reme(2) and the CIS team

(1) Swedish Institute of Space Physics (IRF), Kiruna, (2) CESR (Contact Email: sachiko.arvelius@irf.se)

The terrestrial-origin O+ ion outflow, which is persistently observed by the Cluster CIS/CODIF instrument was statistically studied in the high-altitude (from 3 up to 11 Re), and high-latitude (from 70 to $\tilde{9}0$ degrees invariant latitude, ILAT) polar region. We studied its occurrence and distribution in terms of the solar wind as well as the geomagnetic activity. We found the following: (1) Outflowing O+ ions with more than 1 keV are observed above 10 Re and near the pole (>85 degrees ILAT); (2) The velocity filter effect can explain all the energy dispersion of O+ outflow only below 8 Re but not above; (3) Neither the solar wind convection electric field nor the solar wind dynamic pressure seems to control the O+ outflow.