Geophysical Research Abstracts, Vol. 7, 04085, 2005 SRef-ID: 1607-7962/gra/EGU05-A-04085 © European Geosciences Union 2005

A novel low-mass, wide field-of-view UV auroral imager employing a spherically-slumped MCP optic

S. E. Milan, N. P. Bannister, S. W. H. Cowley, R. Fairbend, G. W. Fraser, F. J. Hamilton, J. Lapington, J. Lees, M. Lester, G. J. Price, and R. Willingale University of Leicester, Leicester, U.K. (steve.milan@ion.le.ac.uk)

We present the design concept and initial results for a novel UV auroral imager. A square pore spherically-slumped microchannel plate optic, with a radius of curvature of 70 mm and a pore size of 85 microns, provides a focal length of 35 mm and a field-of-view of approximately 40° . Experimental data are compared with detailed ray-trace simulations, and we demonstrate an angular resolution of 2.8° for the prototype. The latter translates to a spatial resolution of 40 km x 40 km when imaging from an altitude of 800 km; a desired resolution of 25 km x 25 km is thought to be easily attainable with optimized MCPs. The final instrument is envisaged to have a mass of 2.5 kg and a power consumption of 15 W. A mosaic of such units could provide a very wide field-of-view for imaging the whole auroral oval from low altitude.