Geophysical Research Abstracts, Vol. 7, 03265, 2005 SRef-ID: 1607-7962/gra/EGU05-A-03265 © European Geosciences Union 2005

Solar timing of Dansgaard-Oeschger events in a coupled climate system model and in a simple conceptual model

H. Braun(1), M. Christl(1), S. Rahmstorf(2), A. Mangini(1), K. Roth(3), B. Kromer(1), A. Ganopolski(2), C. Kubatzki(2)

(1) Heidelberg Academy of Sciences, c/o Institute of Environmental Physics, University of Heidelberg, Germany, (2) Potsdam Institute for Climate Impact Research, Germany,
(3)Institute of Environmental Physics, University of Heidelberg, Germany (Contact Email: Holger.Braun@iup.uni-heidelberg.de)

Various climate archives show a quasi-periodicity of about 1470 years during the last ice-age, which manifests itself in the prominent Dansgaard-Oeschger (DO) warming events. Due to the high regularity of this climate cycle, external forcing has been suggested as a trigger of the DO events.

The coupled climate system model CLIMBER-2 is able to reproduce many features of the observed DO events when forced by two sinusoidal freshwater cycles with frequencies chosen according to two well-known solar cycles, the 87-year Gleissberg cycle and the 210-year DeVries cycle. Due to the model dynamics (i.e. the threshold character and the inertia of the thermohaline circulation) the combined effect of these two cycles results in a robust 1470-year timescale of the model response for glacial conditions.

Here we show how a very simple conceptual model, which incorporates only the threshold character and the inertia of the THC, can be used to clarify the dynamics and the response of CLIMBER-2.