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Introduction

Among the intrinsic variables in a magmatic system, oxygen fugacity is by far the least
tangible and most difficult to measure. Indeed, temperature or pressure are explicitly
considered in the expression of the Gibbs’ Free Energy, whereas, oxygen fugacity
is only considered within the equilibrium constant of a reaction involving oxygen in
the system and depends strongly on composition. It has been demonstrated that the
ferric-ferrous ratio in a silicate melt is a good proxy of the degree of oxidation of that
melt ([1], [2]); however, this ratio is rarely measured by wet chemical titrimetric tech-
nigues these days. Here we develop an analogous model based on the stoichiometry of
clinopyroxene in equilibrium with a silicate melt. This allows estimation of oxidation
state of the melt using only microprobe analyses of clinopyroxene phenocrysts.

Theoretical considerations

The FeO/MgO clinopyroxene-melt partition coefficient is temperature dependent, and
also depends on the FeO/MgO ratio in the melt. The amount of FeO in the melt is
constrained by the oxygen fugacity because the Fe203/ FeO molar ratio, following
[3] among others, is also a function of the oxygen fugacity and temperature. Clearly,
the amount of Fe3+ in the clinopyroxene must be proportional to the availability of
this species in the melt. It follows that the Fe3+ /Fe2+ ratio in clinopyroxene must
be dependent on temperature, the composition of the melt and oxygen fugacity. The
implication of this is that, an oxygen geobarometer can be calibrated. We assume that
Fe3+ in oxidised silicate melts enters clinopyroxene as the ferri-calcium Tschermak’s
molecule (ferri-CaTs), instead of Fe2+ as hedenbergite in more reduced lavas.



Thus, we have the following reaction:

CaFe2+Si206 + AlO1.5 +FeO1.5=CaFe3+(AlSi)O6 + FeO + SiO2
hedenbergite + melt + melt = ferri-CaTs + melt + melt

For which the equilibrium constant is:

Ka =g * (Fe3+Al)/(Fe2+Si)cpx * (FeO/FeO1.5)melt * (SiO2/AI01.5)melt

The first term ‘g’, is the activity coefficient from chemical potential consider-
ations, and needs to be evaluated experimentally. The second term is the ratio
(Fe3+Al)/(Fe2+Si) in the clinopyroxene formula (cations per formula unit), which
represents the replacement of hedenbergite by the ferri-CaTs molecule. The third term
is the ratio of ferric-ferrous iron in the melt, which is a function of oxygen fugacity and
temperature ([4], [2], [1]). The last term is the ratio between the concentration of sil-
ica and alumina in the melt, which is dependent on the degree of differentiation of the
melt, which is temperature and composition dependent. The ratio (Fe3+Al)/(Fe2+Si)
in the clinopyroxene formula is thus dependent on the oxygen fugacity, temperature
and composition of the melt.

Clinopyroxene stoichiometry and the oxygen barometer

If we assume that Al/Si in cpx is proportional to Al/Si in the melt, the Fe3+ /Fe2+
ratio in cpx must be dependant on temperature and oxygen fugacity. Because elec-
tron microprobe analyses cannot differentiate the oxidation-state of iron we use the
charge balance approach proposed by [5] to estimate the ferric-ferrous ratio and cal-
ibrate this ratio as a function of (Delta)QFM, in order not to involve temperature as
a variable, using the results of 130 published experiments ([6],[7],[8],[9], [10], [11],
[12], [13], [14]) Using a 2nd degree polynomial regression curve, we have determined
the following relationship:

(Delta)QFM = -1.801*(Fe3+ /Fe2+)"2 + 8.753*( Fe3+ /Fe2+) -0.943 with r2=0.81
(ferric-ferrous ratio in cpx in cations per formula unit).

Limitations

The regression shows an excellent correlation between (Delta)QFM and the Fe3+
/Fe2+ ratio in clinopyroxene; however some caution must be exercised; as Fe3+ can
also enter the clinopyroxene formula as acmite (NaFe3+), this calibration cannot be
used in high-alkaline systems. Also because the charge balance and the ferri-CaTs
-hedenbergite equilibrium depend strongly on the activity of aluminium in the melt,
this calibration might not work in Al-poor systems.
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