Geophysical Research Abstracts, Vol. 7, 02590, 2005

SRef-ID: 1607-7962/gra/EGU05-A-02590 © European Geosciences Union 2005

Interests of introducing biological parameters into models of N₂O emission by soils

C. Hénault (1), P. Laville (2), B. Gabrielle (2), B. Nicoullaud (3), J.C. Germon (1), P. Cellier (2)

- (1) UMR Microbiologie et Géochimie des Sols, INRA-Université de Bourgogne, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
- (2) UMR Environnement et Grandes Cultures, INRA-INAPG, 78850 Thiverval Grignon
- (3) Unité de Science du Sol, INRA, 45 166 Olivet Cedex, France

The production of the greenhouse gas N_2O by soils primarily occurs through the two biological processes of nitrification and denitrification. Soils' biological capacities to nitrify, denitrify, and emit N_2O during these processes are highly variable across soils. We have defined some biological site-specific parameters dealing with soils' capacities to denitrify (Hénault et Germon , 2000), to reduce N_2O to N_2 (Hénault et al., 2001), and to emit N_2O during nitrification (Garrido et al. 2002). These parameters are embedded within NOE, a new algorithm for assessing N_2O emission on the field scale (Hénault et al., 2005). The relevance of NOE was tested by comparing measured and simulated N_2O fluxes using some data from the US TRAGNET worldwide database (http://www.nrel.colostate.edu/projects/tragnet).

A database including N_2O fluxes measured at the field scale as well as corresponding environmental and biological parameters was collected from different agricultural soils in France. Three N_2O models were applied to this database: NGAS (Parton *et al.*, 1996), the relationships proposed by Conen *et al.*, 2000, and NOE. We will present how the introduction of biological site-specific parameters can improve the relationship between simulated and measured N_2O fluxes, and is susceptible to change the estimation of the relative contributions of nitrification and denitrification in the N_2O emissions.

Références

Conen F., Dobbie K.E., Smith K.A. 2000. Predicting N_2O emissions from agricultural soils through related soil parameters. Global Change Biology. 6: 417-426.

Garrido F., Hénault C., Gaillard H., Pérez S., Germon J.C. 2002. N₂O and NO emissions by agricultural soils with low hydric potentials. Soil Biology and Biochemistry. 34: 559-575.

Hénault C., Bizouard F., Laville P., Gabrielle B., Nicoullaud B., Germon J.C., Cellier P. 2005. Predicting *in situ* soil N₂O emission using NOE algorithm and soil database. Global. Change Biology. 11: 115-127.

Hénault C., Chèneby D., Heurlier K., Garrido F., Pérez S., Germon J.C. 2001. Laboratory kinetics of soil denitrification are useful to discriminate soils with potentially high levels of N₂O emission on the field scale. Agronomie. 21: 713-723.

Hénault C., Germon J.C. 2000. NEMIS, a predictive model of denitrification on the field scale. European Journal of Soil Science. 51: 257-270.

Parton W.J., Mosier A.R., Ojima D.S., et al. 1996. Generalized model for N_2 and N_2O production from nitrification and denitrification. Global Biogeochemical Cycles. 10: 401-412.