Geophysical Research Abstracts, Vol. 7, 01831, 2005 SRef-ID: 1607-7962/gra/EGU05-A-01831 © European Geosciences Union 2005

Short and long memory unobserved components in hydrological time series

M. Corduas

Dipartimento di Scienze Statistiche, Università di Napoli Federico II, Via L. Rodinò 22, 80138 Naples -I (corduas@unina.it /Fax: +39 081 2537466)

In this work we discuss the problem of estimating unobserved components in short and long memory hydrological time series. In particular, we focus our attention on *Decomel* (Piccolo, 1979, 1982). This is a statistical method to decompose a stochastic process $Z_t \sim ARMA(p,q)$ into the sum of two independent processes $X_t \sim ARMA(p_x, q_x)$ and $Y_t \sim ARMA(p_y, q_y)$. The method relies on four main steps:

i) to identify the conditions for the decomposition and the orders $(p_x, q_x; p_y, q_y)$;

ii) to search for the parameter vector $\beta = (\beta_x, \beta_y)'$ characterizing the AR and MA operators of the component processes such that:

$$G(\beta) = \int_{-\pi}^{\pi} \left(f_z(\omega) - f_x(\omega; \beta_x) - f_y(\omega; \beta_y) \right)^2 d\omega = \min!$$

where $f_z(\omega)$, $f_x(\omega; \beta_x)$, $f_y(\omega; \beta_y)$ are the spectra of the Z_t, X_t, Y_t , respectively;

iii) to check for the admissibility conditions, that is, the strict positiveness of the estimated spectra of the components;

iv) to evaluate the filter weights needed to extract the components from the series by standard Wiener-Kolmogorov theory.

The integral is computed over a grid of discrete points. This results in a non-linear regression problem.

In this article we discuss how the procedure can be fruitfully applied to analyse hydrological time series. Firstly, we modify *Decomel* to make it a semiparametric method.

Secondly, we discuss an extension of the decomposition procedure to long memory time series. An application to some river flow time series conclude the work.

Essential References

- BERAN, J. (1994) Statistics for long memory processes. New York: Chapman and Hall. HIPEL, K.W. and McLEOD, A.I. (1994) Time series modelling of water resources and environmental systems. Amsterdam: Elsevier. HOSKING J.R.M. (1981) Fractional differencing. *Biometrika*, 68, 165-176. PICCOLO, D. (1979) DECOMEL: un metodo statistico per la decomposizione dei processi
- ARMA. Atti della Giornata AIRO, 1, S15-S32. PICCOLO, D. (1982) A comparison of some alternative decomposition methods for ARMA
- models. Time Series Analysis: theory and practice (O.D. Anderson ed.). Amsterdam: North Holland, 1, 565-582.