Geophysical Research Abstracts, Vol. 7, 01631, 2005 SRef-ID: 1607-7962/gra/EGU05-A-01631 © European Geosciences Union 2005

Structure and motion of the magnetotail current sheet during flapping

A. Runov (1), V. A. Sergeev (2), S. Apatenkov (2), W. Baumjohann (1), R. Nakamura (1), Y. Asano (1)

(1) Institut für Weltraumforschung der ÖAW, Graz, Austria, (2) St.Petersburg State University, St.Petersburg, Russia, (Andrei.Runov@oeaw.ac.at/+433164120590),

Using magnetic field, plasma, and electric current characteristics during 78 rapid crossings of the magnetotail current sheet by Cluster during July - October 2001, we found that most of rapid crossings are due to kink-like transients passing over the spacecraft. The normals to the kink fronts are tilted in the Y - Z plane, in 54 % of the studied cases the tilt angle exceeds 45°. The electric currents exhibit a corresponding behavior. The kinks fronts are often close to vertical with $|j_z| > j_u$, and sometimes over-steepened ($j_u < 0$). In 8% of the cases, the Y-component of the kink front velocities were negative in the postmidnight sector and positive in the premidnight sector, showing that the kink waves propagate from the near-midnight sector toward the flanks. The remaining 11% of the cases were mainly situated between 0 < Y < 8 R_E . The half-thickness of the current sheet during the flapping varies from 1 to 20 ion thermal gyroradii (calculated using the lobe magnetic field). No relationship between half-thickness and tilt of the normal was found. In 68 of 78 cases, the magnetic field curvature vector was directed Earthward (positive curvature). The 10 cases with a negative curvature, as well as high speed flow events, were found at $0 \le Y \le 8 R_E$. The minimum curvature radius varies between 500 and 10000 km, showing no close relationship with the sheet half-thickness estimate. In 73% of the crossings the adiabaticity parameter κ , ruling ion motion in the current sheet, is less than unity. In 55% of studied cases the flapping current sheets have a center peak distribution, with the current density maximum at $B_x \sim 0$, and in 45% the current density distributions were off-center, with the main current shifted from the neutral sheet.