Hall MHD reconnection with an initial guide field B_{y0}

H.A. Yang, S.P. Jin and Y. Li

School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (yha@mail.ustc.edu.cn / Phone: +86 551 3607227)

An uniform out-of-plane magnetic field component B_{y0} is added to the equilibrium Harris sheet with plasma β =0.5 and L_c =0.5 d_i (where L_c is the half-width of the equilibrium current layer and d_i is the ion inertial length). Driven by a constant boundary inflow, the magnetic reconnections with various guide field B_{y0} are investigated using a 2.5 dimensional Hall MHD code developed from a multi-step implicit scheme.

For the cases of $B_{y0}/B_{x0}=0.0, 0.5, 1.0$ and 1.5, the reconnection rates $\partial A/\partial t|_{st}$ at quasi-steady states are approximate to 0.15, 0.14, 0.12 and 0.1, respectively. Such results prove that the dynamic growth of Hall MHD reconnection is considerably suppressed by the field of cross-current sheet. In the case with a finite B_{y0} the spatial profile of B_y component along x at $z=0.04d_i$ is a up-down distorted signature with respect to $B_y = B_{y0}$ which is different from the bipolar signature associated with the B_y quadrupolar pattern in the case of a zero guide field ($B_{y0}=0$).

For the case with a finite B_{y0} the decoupling of electrons and ions also occurs near the X line, but the effect of initial B_{y0} on the electron flow is greater than that on the ion flow. While the ion flow remains primarily horizontal out of the reconnection region, the electrons have a stronger flow into the reconnection region in the first and third quadrants than that in the second and fourth quadrants.