A new technique for fire risk estimation in the wildland urban interface

S. Dasgupta (1), J.J. Qu (1,2), X. Hao

Center for Earth Observing and Space Research, George Mason University, Virginia, USA,
NASA Goddard Space Flight Center, Maryland, USA

A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface. The physical basis lends meaning, a site and season independent applicability, possibilities for computing spread rates and ignition probabilities, features contemporary fire risk indices usually lack. The method requires estimates of grass moisture content and temperature. A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval, while MODIS land surface temperature/emissivity products are used for retrieving grass temperature. Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER.