About distribution of energy, transported in the magnetosphere during superstorm on Nov 20, 2003, between the ionosphere and ring current.

V. Mishin, Y. Karavaev, L. Sapronova, and Y. Kuzminyh

Institute of Solar-Terrestrial Physics, SD RAS, Irkutsk, Russia (<u>Mishin@iszf.irk.ru</u> / Fax: 73952511675)

The values of the power consumed in the ionosphere (Q_i) and DR-current (Q_{DR}) , also the ratio $\alpha = (Q_{DR}/Q_i)$ during different regimes of the superstorm on Nov 20, 2003, were calculated by using the new method without applying of the known DPS equation. The values of the Perreault-Akasofu's Poynting flux $\varepsilon = 10^{-7} V_{sw} B^2 \sin^4(\theta$ $/2)L_0^2$ have been used in calculations of Q_{DR} , and the parameter of the same sense $\varepsilon' = \Psi_1^2 V_{sw}/\mu_0 S$, where Ψ_1 – the open tail magnetic flux, S – the area of the tail crosssection, pierced by Ψ_1 . Having the values of ε , ε' , respectively, the underestimated and overestimated values of the total power Q of the superstorm on Nov 20, 2003 were found. They were used to calculate $Q_{DR}=0.5(Q-Q_i)$, and α .

The values α were changed during the superstorm from $\alpha \ll 1$ to $\alpha \sim (3 - 10)$, as distinct from the results that are known from the literature. Two maximums of α coincided with the substorm onsets at 0314 and 0351 UT. Some other maximums were found for the interval (1112-1210) UT of the driven regime of the disturbance, when a saturation of the ionospheric electric field was observed. We interpreted this saturation as the result of the observed fragmentation of the cross-tail current in the substorm current wedge, SCW.

Thus all the above-mentioned maximums of α , likely, are linked with an amplification of the ring current due to injection of the particles from the SCW. On the other hand, the tendency of an increasing of α from $\alpha <<1$ to $\alpha >1$ was observed when the polar cap potential drop was growing from <100 kV to >150 kV.