Instabilities of a barotropic rotating shear layer

Ana Aguiar, Peter Read

aguiar@atm.ox.ac.uk, AOPP, University of Oxford, UK

• Barotropic instability seems to play a key role in hurricane intensification. Meso-vortices are triggered by strong horizontal shears in the eye wall. [KS]

• Such a mechanism happens wherever a rapidly rotating, homogeneous fluid is confined within physical boundaries, as for e.g. in the outer core of the Earth. [SR]

- Axisymmetric model;
- Grid stretched in z, but not in r;

Right cylindrical geometry;
differential rotation in both inner disks. [c.f. lab experiment]

Comparison is made between different sets of (*Ro*, *E*). [*E* fixed for each $\pm Ro$ pair] $\overline{\ }$

3. Experimental Results

[effects of stepped topography]

How big are the effects? [c.f. internal disk position]
The top inner disk was moved up (+) or down (-) by h, wrt rigid outer annular surface.

5. Conclusions

> Experiments indicate that, for discontinuous depth changes, a significant $\pm Ro$ asymmetry occurs if $h \ge |Ro| \cdot H$. This must happen when topographic effects become relevant.

> NS 2D shows the importance of ageostrophic effects in the $E^{1/3}$ shear layers. For |Ro| > 0.18 circulation becomes asymmetric wrt sign of Ro. For $Ro \ge +0.4$, flow develops toroidal structure associated with a <u>centrifugal instability</u> (resembling Taylor-Görtler vortices) – also seen in lab. experiments.

6. Future β -effect? [in the Lab.] β -effect? $\beta > 0$ (X-section) $\beta < 0$

References: [FR] Früh, W-G. & Read, P.L., 1999, J.Fluid Mech..383.143-171

[H] Hollerbach, R., 2003, J. FluidMech., 492,289-302. [HT] Hide, R. & Titman, C.W., 1967, J. Fluid Mech., 29,39-60.
 [KS] Kossin, J.P. & Schubert, W.H., 2001, J. Atmos. Sci., 58, 2196-2209. [SR] Song, X. & Richards, P.G., 1996, Nature, 382,221-224